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Interaction of a quantum syste&f' containing a single stat@) with a known infinite-

dimensional quantum systeﬁ%igo containing an eigenvalue barid,, A,] is considered.

A new approach for the treatment of the combined sysfgsn= Sf ® Sk, is developed. This
system contains embedded eigenstatgg)) with continuous eigenvaluese [A,4, Ap], and,

in addition, it may contain isolated eigenstafés) with discrete eigenvalues ¢ [A4, Ap]-

Exact expressions for the solution of the combined system are derived. In particular, due to
the interaction with the systenﬁgo, eigenvaluek of the statg®) shifts and, in addition, if

E € [Ag, Ap] this shifted eigenvalue broadens. Exact expressions for the eigenvalue shift and
for the eigenvalue distribution of the stdt@) are derived. In the case of the weak coupling
this eigenvalue distribution reduces to the standard resonance curve. Also, exact expressions
for the time evolution of the stat®(¢)) that is initially prepared in the stat®(0)) = |©)

are obtained. Here again in the case of the weak coupling this time evolution reduces to the
familiar exponential decay. The suggested method is exact and it applies to each coupling of
the systemS{ with the systemS‘go, however strong. It also presents a relatively good ap-
proximation for the interaction of a nondegenerate eigengtateof an arbitrary systens®

with an infinite systeme;o containing a single eigenvalue band, provided this eigenstate is
relatively well separated from other eigenstatess6fand provided the interaction between

the systems® andSé’0 is not excessively strong.

1. Introduction

The aim of this paper is to initiate the development of a general mathematical
formalism for the treatment of the interaction of a finite quantum sysf§mwith an
infinite quantum syster§?,. SystemS] containsp discrete eigenvalues and eigenstates,
while 82 is an arbitrary quantum system that, in addition to possible discrete eigenvalues
and eigenstates, may contain one or more eigenvalue bands. We assume that the solution
of the systemS?, is known, and we concentrate on the following problem: What is the
solution of a systens; subject to the interaction with the systesf),?

There are numerous problems in physics and chemistry of this type. For example,
consider the interaction of an atom or a molecule with the electromagnetic field. This
atom or molecule can be approximated with a sysfnontaining finite number of dis-
crete eigenvalueg; and the corresponding eigenstat@s). Those eigenstates interact
with one-photon statel® ,, ko) wherelkw) represents a state containing one photon
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with momentunk and polarizationo . Stateg® ,,, Kzor) interact with two-photon states

|®,, ke, K'z’), which in turn interact with three-photon states, etc. [1]. To a very good
approximation one can ignore all states containing multiple photons, and one can as-
sociate systens’, with the set of all one-photon state® ,, ker) with corresponding
eigenvalues. The solution to this system is known since the gtadesare essentially
plane waves, whil¢®,) are eigenstates of the isolated molecule which are assumed to
be known (at least to the very good approximation). Hence one has formally the problem
of the interaction of a finite systed¥ with the known infinite systens’ . As another
example consider the interaction of the molecule with a surface of a solid. Molecule
in isolation can be again approximated with some finite-dimensional sySfensys-

tem S2, represents a solid with a surface. The solution to this system usually consists
of multiple eigenvalue bands (k) (s = 1,2,...) [2]. In addition, systen&2, may also
contain some discrete eigenvalues corresponding to the possible surface states [3]. One
would like to derive properties of the molecule (systéff) subject to the interaction

with a solid (systemS?,). Again one can assumes that the solution to the systeém

is known. Usually one knows only an approximate solution of this system [2]. Never-
theless, assuming this approximate solution to be good enough, the problem is to find
a solution of the combined systefy, = S; @ St with emphasize on the subsys-
temsSy.

In this and similar cases one has formally identical situation. There is a sy#tem
that contains finite number of discrete eigenvaliigs With this system is associated
a p-dimensional spac&(y. Corresponding eigenstat¢®;) € X{ are localized, and
they can be normalized to unity. There is another sysf&nthat contains an infinite
number of eigenvalues and eigenstates. In addition to possible discrete eigenvalues, sys-
temS?, contains one or more eigenvalue banggk). With this system is associated an
infinite-dimensional spac&’, orthogonal to the spack;. Corresponding eigenstates
|®,(k)) € X2 can be orthonormalized to&function. Functions,,(k) and the eigen-
states|®, (k)) are known, or if not exactly known, one can at least obtain a relatively
reliable approximation to those quantities. Also, if there are any discrete eigenvalues
of the systemS?,, those eigenvalues and the corresponding eigenstates are also known.
Our ultimate goal is to describe properties of an arbitrary sysigrthat interacts with
an arbitrary systens?,.

Standard way how one treats such problems is to use perturbation expansion [1].
Since the systen§?, is infinite, this is usually the only method available. In particular,
the only systematical method for the treatment of the interaction of a molecule with
radiation is presently perturbation expansion. No other sufficiently exact and sufficiently
general method is known. Though perturbation expansion is a very powerful and very
general approach, in the case of strong coupling it suffers from a serious drawback of
slow convergence. If the coupling is sufficiently strong, perturbation series may even
diverge and the entire method fails.

We will present here a new method for the solution of such problems. This method
provides exact expressions for the eigenvalues and the corresponding eigenstates of the
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combined systen$,,. No power series expansion in terms of the coupling parameter is
involved, and the results obtained are valid for each coupling. From a numerical point
of view this is particularly important if the coupling between systeffjsand St is

strong or if highly precise solution to the syste®y, is required. In addition to this
computational benefit, it is always advantageous to find new ways how to formulate
and solve old problems. New formulations and new solutions of old problems usually
carry a potential to open some previously unknown ways of looking at those problems,
and they may provide some novel conceptual insights that could not be obtained other-
wise.

2. Formulation of a problem

In order to consider above problem in the most general form, one has first to solve
mathematically simpler problem. The solution of this simpler problem is then used as
a building block to obtain a general solution [4]. Accordingly, in the present paper we
make two restrictions. First, we assume that the syst¢ns one-dimensionald = 1).

In this case the spack{ that is associated with this system contains a single gigte
with the eigenvalugt. Corresponding eigenvalue equation is

Al®) = E[®), (0]0)=1, (1)

whereA = E|0)(0| is a Hermitian operator and whel®) is normalized to unity. We
refer to the staté®) as a local state.

Second, we assume that the syst&{ncontains only a single one-parameter eigen-
value band and no discrete eigenvalues. Corresponding eigenvalue equation is

B|® (k) = A(k)|®(K)), Kk € [k, kp], (2a)

where B is a Hermitian operator. The function(k) is a continuous nondecreasing
function of a parametet. All eigenvalues of a syster§2, are confined to the inter-

val [A,, Ap], Whered, = A(k,) is the smallest possible eigenvalue, while = A(k;)

is the largest possible eigenvalue. Since the eigenvalue band depends only on a sin-
gle parameter, eigenstatgB(k)) € X% are nondegenerate. Those eigenstates can be
orthonormalized to &-function according to

(@) |@(K)) = 8(k — k). (2b)

Relations (1) and (2) describe systedé and S%, in isolation, that is without
mutual interaction. An arbitrary interaction can be written in the f@vhwhereV is a
Hermitian operator that has nonvanishing matrix elements only between ptateX
and statesd (k)) € X2, and wheres is a coupling parameter. Without loss of generality
one can assumé # 0 andg > 0. The eigenvalue equation describing combined system
Sx = 8§ @ S subject to the interactiofV is

HIV) = ¢|V), (3a)
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Figure 1. Interaction of the one-dimensional systgfrwith infinite-dimensional systerﬁlgo. SystemS§

is described by a single eigensta&®) with the eigenvaluet. Systeme;o is described by the eigenvalue
equation (2). Combined systefia,, is described by the eigenvalue equation (3).

where
H=A+B+pgV. (3b)

We emphasize tha is not an expansion parameter. Unlike the standard perturba-
tion approach where various results are usually expressed as a power series expansion in
terms of8, we will obtain all results in a closed form. Therefore one could simply in all
relations replacgV with V. Nevertheless, it is convenient to write the interaction in the
form BV. In this way the dependence on the coupling strength is made explicit. Various
effects can be thus directly analyzed in terms of a coupling between sySteamsl S,

(see figure 1).

Our aim is to solve the combined eigenvalue equation (3a) given the solution of
the eigenvalue equation (2a). Accordingly, we will consider sysf&nas the original
unperturbed system. From this point of view, relation (3a) is a perturbed eigenvalue
equation where the perturbation is represented by the interagtband by the op-
erator A that describes the syste&f. In a standard formulation of the perturbation
approach, one usually considers union of syst&thandS2, without mutual interaction
as the unperturbed system. Moreover, in this standard approach emphasize is on the state
|®) e X{ as the original unperturbed state and one usually does not consider the effect
of the perturbation on the statgs(k)) € X5..

As already emphasized, we will solve above problem in a novel way that does not
rely on the power expansion characteristic to the standard perturbation method. In the
first part of the paper the solution of the eigenvalue equation (3a) will be considered.
After this is done, we will generalize the obtained results to the corresponding time-
dependent eigenvalue equation. In addition, we will briefly consider the solution to a
more general generalized eigenvalue equation.

Though we have assumed that the systgfris one-dimensional, the results ob-
tained can be also applied to multi-dimensional sysfnm the interaction with a sys-

temS?.. If |©;) is a nondegenerate eigenstateSgfit interacts with other eigenstates
of S only indirectly through the intermediate interaction wih . If the corresponding
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eigenvaluek; is relatively well separated from other eigenvaluesspfand if the inter-
action betweeis; andS?, is not excessively strong, one can neglect all other eigenstates
of §7. Thus to a very good approximation one has the interaction of the one-dimensional
systemS¢ containing a single eigenstat®;) = |®) with the systemS2. The results
obtained in this paper apply to such cases as well. In addition, one can completely re-
lax this restriction to the one-dimensional spa&feas well as another restriction to the
spaceS?, containing only a single one-parameter eigenvalue band [4]. Accordingly,
all results presented in this paper can be generalized to the interaction of an arbitrary
finite-dimensional systerf with an arbitrary infinite-dimensional systesif, [4].

3. Interaction of the one-dimensional system with the known finite-dimensional
system

In order to solve eigenvalue equation (3a) we will utilize the known solution of the
similar eigenvalue equation that instead of the infinite-dimensional sySfeimvolves
a finite-dimensional systei’. The solution of the eigenvalue equation that describes
combined systens,,; = S§ @ S’ can be obtained in a closed form [5]. Our general
strategy is to derive an appropriate limit> oo.

For the sake of additional flexibility, we will describedimensional systens?
with a generalized eigenvalue equation

B|®;) = 1S |®;), i=1,....n. (4a)
The eigenstatelb;) of this system can be orthonormalized according to
(©iIS"|@;) = 8. (4b)

In the above relation8 and S’ are Hermitian operators acting in the spacg
In addition, operato8’ is positive definite. No other assumption about those operators
is made. Hermiticity of these operators and positive definitene§é ehsures that the
eigenvalues.; are real.

The interaction between systers$ and S? is introduced by the Hermitian op-
eratorsgV and P, and the eigenvalue equation describing the combined syStem
subject to the interactio(BV, BP) is

HWV,) =¢S9W¥,), r=1,...,n+1, (5a)
where
H=A+B+AV, S=|0)(®| + S + pP. (5b)

In order to guarantee the reality of the eigenvalgesperatorSis required to be positive
definite. One finds tha® is positive definite if and only if operatdt satisfies [5]

B2 (OIP|®;)(®;|P|©) < 1. (6)
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There is no condition on the operafdr except that this operator should be Her-
mitian and that it should connect the stg® € X¢ with the states®;) € X°.
In analogy to (4b) eigenstaté®,) can be orthonormalized according to

(\I’r|S|\pr> = 5rp- (SC)

It is convenient to distinguisbardinal andsingular eigenvalues and eigenstates of
the combined system [5]. By definition, an eigenvadu®f (5a) is cardinal if it differs
from all the eigenvalue&; of (4a), otherwise it is singular [5]. In other words, each
cardinal eigenvalue, satisfiess, ¢ {A;}, where{);} is the set of all the eigenvalues
of the systemS?. Cardinal solutions are by far the most important. Singular solutions
usually result as a consequence of some symmetry or as a consequence of some other
special condition.

Concerning cardinal solutions one finds [5: ¢ {A;} is an eigenvalue of the
perturbed eigenvalue equation (5) if and only if it is a root of the functiGn:

hie) = p°Qe)+E —e =0, (7a)

where

Q) = Z (OV — eP|D;) (D; |V — 5P|®)'

oy (7b)

Once a patrticular perturbed eigenvalgieis found as a root oh(e) = 0, the
corresponding normalized eigenstate is [5]

(D; |V PO
) = Qw['@ ﬁZ'—’;')m}, (82)

where

=1+ p2 Z (ilV _ii'z@ — B2 Z| (OIP|®;)| (8b)
1

There is only one eigenvecto¥,) associated with each eigenvalged {A;}, i.e.,
each cardinal eigenvalue is nondegenerate. Similar expressions are obtained for singular
solutions of the perturbed eigenvalue equation. However, singular eigenvalues may be
degenerate [5].

Relations (4a) and (5a) are generalized eigenvalue equations @hiran arbi-
trary positive definite operator iki® and whereP is an arbitrary Hermitian operator that
connectsX¢ with X? and that satisfies condition (6). Most important is the dase 0
andS’ = 1® wherel? is the projection operator on the spacg In this case eigenvalue
equations (4a) and (5a) reduce to simple eigenvalue equations. The solution (7) and (8)
of the eigenvalue equation (5a) accordingly simplifies. We will mainly consider only this
case since it corresponds to the eigenvalue equations (2a) and (3a) of our problem. There
are, however, some more general problems that require &thgrl® and/orP # 0. In
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order to be able to treat such more general problems, we need a general solution (7)
and (8).

In addition to the explicit expressions (7) and (8) that provide all cardinal solutions
to the perturbed eigenvalue equation (5a), we also need interlacing rule according to
which perturbed eigenvalues are interlaced with the unperturbed eigenvalugs

e Arrange the perturbed eigenvalugsas well as unperturbed eigenvaluesin
the nondecreasing order. Perturbed and unperturbed eigenvalues thus arranged
satisfy the interlacing rule [5]

g1 S A <A< - <Ay < &gt 9)

Interlacing rule applies to many similar problems where the original sysieis
perturbed by a finite rank perturbation. Thus one may consider molecular vibrations
in the harmonic approximation. One finds that in this approximation vibrational fre-
guencies of two molecules that differ from each other by an isotopic substitution are
interlaced according to this rule and its simple generalization [6].

The main idea in solving eigenvalue equation (3a) that describes combined sys-
tem S, is to approximate infinite-dimensional syste#f) with an n-dimensional sys-
temS?. This is done by replacing infinite-dimensional spade with ann-dimensional
subspacex?. Cardinal eigenvalues and eigenstates of the corresponding combined sys-
temS,;1 = S¢ ® S’ are given by relations (7) and (8). Taking an appropriate limit
n — oo one can obtain the required solution to the system

It is important to note that the limit — oo can be taken in such a way that in each
step (i.e., in the case of eaghinvolved) one can avoid singular solutions. Namely, if
the eigenvalue equation (5a) has some singular solutions, there is always an infinitesi-
mal variation of the matrix elements of the operatBrandV such that the resulting
eigenvalue equation has no singular solutions. This follows from the fact that each
eigenvaluer; of the unperturbed eigenvalue equation (4a) is a continuous function of
the matrix elements of the matrig, while each eigenvalue, of a perturbed eigen-
value equation (5a) is a continuous function of the matrix elements of maBiaadV.

Thus for each finite: all singular solutions can be eliminated with an arbitrarily small
variation of matrices involved. However, if two eigenvalue equations refer to the same
finite-dimensional space, and if the respective matrices differ from each other by an ar-
bitrary small amount, then those two equations describe two physical systems that also
differ from each other by an arbitrary small amount. Moreover, we consider the case
where in a limit: — oo unperturbed eigenvalues form an eigenvalue band. Afis big
enough those eigenvalues become very close to each other. An infinitesimal variation
of those eigenvalues does not change a physical content of the corresponding system.
Therefore, one can safely assume that for each finidee can approximate eigenvalue
equation (3a) with an eigenvalue equation of a type (5a) that contains no singular solu-
tions. Expressions (7) and (8) are hence sufficient in order to obtain a correct transition
n — oo. However, though eact: + 1)-dimensional systens,,; that approximates
infinite-dimensional systerf,, contains only cardinal solutions, as a limit of a process
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n — oo one obtains all solutions of a systefiy,. This property is analogous to the
well-known fact that an infinite sequence of rational numbers may converge to any real
number, rational or irrational.

4. Isolated and embedded solutions of the combined system

Consider now eigenvalue equation (3a). In order to approximate sy&tewith a
finite-dimensional syster§? containingn eigenvalues, we partition the intera,, k]
into n equal subintervals. In a midpoint of each of these subintervals we take a value of
the functioni.(k). In this way a continuous functiox(k) is replaced by: eigenvalues.;.
Similarly, matrix elementg®|V|® (k)) that depend on the continuous paramétare
replaced by: matrix elementg®|V|®;). This corresponds to the replacement of the
infinite-dimensional system that contains eigenvalue band with a finite-dimensional sys-
tem that can be solved by relations (7) and (8).nAscreases solution (7) and (8) of the
approximate finite-dimensional system improves, and in a limit oo it converges to
the solution of (3a).

As a consequence of the interlacing rule, in a limit> oo one obtains two qual-
itatively different solutions to the combined systeéin. According to the above con-
struction,A, < A; andx, < A,. Asn increases.; approaches ta, while A, approaches
to A,. Inalimitn — oo unperturbed eigenvalugs are dense in the intervél,, A,].

Due to the interlacing rule perturbed eigenvalegs . ., ¢, are also dense in this inter-
val. Thus in a limita — oo eache € [A,, A;] IS @ perturbed eigenvalue. In addition,
there are two perturbed eigenvalues that may escape infegval,]. Those are per-
turbed eigenvalue; that may satisfy; < A,, and perturbed eigenvalug, ; that may
satisfye, 1 > Ap. (See figure 2).

In conclusion, the combined systefa, may in general contain two kinds of per-
turbed eigenvalues and eigenstates. An eigenvadii@ perturbed system satisfies either
e ¢ [ha, Ap] OF & € [Ag, Ap]. We call the perturbed eigenvalde ¢ [A,, A,] anisolated
eigenvalue. Since this eigenvalue is outside the Qapd\,], it is discrete. The cor-
responding eigenstat&;) can be hence normalized to unity. In this respect isolated
eigenstatg ;) is similar to the local statg®) e X that is also normalized to unity.
There are at most two isolated eigenvalues (and eigenstates), opg left, and one
right e > A,. We call the perturbed eigenvalees [A,, A,] anembeddectigenvalue.
This eigenvalue is part of a continuous band of eigenvalues, and the corresponding eigen-
stateg W (¢)) are normalized to &-function. In this respect embedded eigenstates of the
combined system are similar to the eigenstategk)) of the systemS? that are also
normalized to &-function.

4.1. Isolated eigenvalues and eigenstates

In order to find isolated eigenvalues we look for roetof relation (7a) that in a
limit n — oo satisfye; ¢ [A4, Ap]. IN this limit the sum in (7b) becomes an integral, and
the equation (7a) is replaced with

h(g;) = BPwle)) +E—e; =0, &5 ¢ [has Apl, (10a)
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Figure 2. Interaction of the one-dimensional systgfnwith the finite-dimensional systen?l,l,’ containing

n eigenstates. Eigenvalues of the combined syster§, 1 are interlaced with eigenvaluesg of the

systemS,Il7 according to (9). In the limiz — oo eigenvalues, form a continuous band in the interval

[*a, 2p]. In addition, eigenvalue; may converge to isolated eigenvaltie < A4, while eigenvalue;, ;1
may converge to isolated eigenvaltig > .

where in the casP = 0

dk, & ¢ [ M) (10b)

_/kb (OIV]® (k) (@ (K)|V|©)
w(e) =
k e —Ak)

a

Functionw (¢) can be written in the equivalent form

Ab
w(e) = f(_)»i dr, & ¢ [Ag, Apl, (10c)

€ —

where

(OIV[DP (k) (P (k)IV|O)
di(k)/dk

, A€ [Ag, Apl. (12)
Ar=r(k)

Right-hand side of (11) is evaluated in the padinthat satisfies. = A(k). Since
A(k) is nondecreasing function &f f (1) is nonnegative. Also, derivativekddi = p (1)
is a density of states [2,7], and hence one can write

f) =

fG) = pM)(ONV|P®R))NPK) VIO A € [Aa, Al (11)

>|A=A(k)’
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Let us now investigate conditions for the existence of the isolated eigenvglues
From (10c) one finds

Ab
w(d00) = 0, dw(e) _ _/ S ()
A

de (e = A)2

Since f (1) > 0, functionw(¢) is monotonically decreasing function in the inter-
vals (—oo, A,) and(A,, o), while in a limite — 4oo this function converges asymp-
totically to zero. We also consider the value wfe) in the pointsi, and A, on the
edge of the banfi.,, A,]. It is convenient to define those values as left and right limits,
respectively

dr <0, &¢ [y, Al (12a)

0, =) = Sﬂan w(e) <0, o =w(hy) = FET,er(S) > 0. (12b)

Functionw(¢) may diverge in the poink, (,) in which case one has, =
—00 (w; = 00). For example, iff (A,) # O functionw (¢) diverges in the point = A,
and one has®, = —oo. One hasf (1,) # 0 whenevef®|V|® (k,)) # 0 andp(k,) # O.
Similar conclusion applies to the point= A,. Note that in the case of one-dimensional
solids density of statepg (k) usually becomes infinite at the edges of the band [2,7].
However, in the case of higher dimensional solid&) is usually highest towards the
center of the band, and is least at the edges [2,7].

Interlacing rule implies that there is at most one left-isolated eigenvalue A,
and at most one right-isolated eigenvalye> %,. The same conclusion follows from
the above relations. Sinee(e) is monotonically decreasing in the intervalsoo, A,)
and(i,, 00), h(e) = B?w(e)+ E —¢is also monotonically decreasing in those intervals.
Hence(¢) = 0 can have at most one root in the intergabo, A,) and at most one root
in the interval(i,, 00).

Relation (10a) also implies conditions for the existence of isolated solutions. One
finds that in thg E, B)-plane right-isolated eigenvalug exist in the region on the right
side of the parabol& = A, — B2w;, while on the left side of this parabola it does
not exist. Similarly, left-isolated eigenvalug exist in the region on the left side of
the parabolaZ = A, — B2w,, while it does not exist on the right side of this parabola.
Considered as a function of a paramdigright-isolated eigenvalug; exist if and only
if E > Eg, while left-isolated eigenvalug; exist if and only ifE < E; whereEx and
E; are right and left critical points, respectively

Eg = — BP0y,  Ep =i —fp’0,. (13a)
In a similar way one can define critical poirgg and gy, relative to the coupling:

_ 1/2 _ 1/2
ﬁL:(E k") if £E> A, ﬁR:(“f) if £ <A,  (13b)

|7 | |y

Critical point 8; applies to the casé > A,, while critical point8r applies to the
caseE < A,. If namely E < A, left-isolated eigenvalue; exist for each value o8,
while if E > A, right-isolated eigenvaluey exists for each value g8. However, if
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E > A, left-isolated eigenvalue; exists if and only ifg satisfies > B, while if
E < A, right-isolated eigenvaluey exists if and only ifg satisfies8 > Bg.

Using relations (10) one can estimate the interval where isolated eigersjalue
should be confined. In the case of the right-isolated eigenvalue one finds (see appendix):

o if E € (Eg, Ap) then

0|V2e
Ap < Ep < Ap+ ﬁzw; (14a)
|E — Al

o if E € (), 00) then

(©IV?|©)

E <éep < E + B2 .
|E — Apl

(14b)

Thus if E < 1, right-isolated eigenvalue is at most at the distaggéed|V?|®)/
(Ay — E) from the band),, 1,], i.e., it is relatively close to this band. If, however,
E > A, this eigenvalue is at least at the distaice A, from [A,, A,], i.e., itis relatively
far from this band. 1f8 is small, the distinction between those two cases is sharp. With
the increase of the couplingthis distinction is increasingly more blurred. For example,
if w(e) diverges in the point = A,, eigenvalues; exists for each value of and for
eachp # 0. However, ifE < A, and if the couplings is relatively small, this eigenvalue
is very close ta.,. For smallg this eigenvalue can appreciable drift away from the band
[Aa, Apl ONlY if E > A,

Isolated eigenvalue; is a function of the local eigenvaluge and of the coupling.
This dependence can be derived from the relation (10a). One ka¥(p?w (g;) + E —
e1) = (B%dw/de; — 1) de; + 2Bw dpB + dE and hence

dE 11— B2dw(e;)/de;’ 38 1— B2dw(e;)/de;’

Above relations give the rate of change of the eigenvajueith a change of the
local eigenvaluerE, and with a change of the couplirgy According to the first relation
and since @/de < 0, one has 0< d¢;/0E < 1 except in a trivial cas@ = 0 when
de;/0E = 1. Thus if the local eigenvalug increases (decreases), isolated eigenvglue
also increases (decreases), i.e., it moves in the same direction. However, the change of
this isolated eigenvalue is in the absolute value smaller than the change of the local
eigenvalueE. According to the second relation and sireé&r) > 0 whilew(e;) < 0,
if the coupling 8 increases, isolated eigenvalag moves further away from the band
[Aq, Ap]. The effect of the coupling is thus to repeal isolated eigenvalugsfrom
this eigenvalue band and from each other: eigenvajumcreases while eigenvalug
decreases. This effect is analogous to the mutual repulsion of the perturbed eigenvalues
in the case of the two level system subject to the interadti¢r].
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Onceg; is known, one can find the corresponding eigenstd#tg. In a limit
n — oo and in the cas@ = 0 relations (8a) and (8b) are replaced with

1 (D (k)|V|©)
W) = W[@) + B ; m|¢(l€)>dk o &1 & [has Apl, (16a)
where
k
" (OIV|P (k) (P (k)V]O)
=14 B2 dk. 16b
Cr=ttr ) T e (160)
Quantity Q; can be written in the equivalent form
A
_ ' A 4 geGw(er)
O;=1+p8 /A 7{81_”2%_1 B & (16b)

Above relations complete the solution of the combined eigenvalue equation (3a) as
far as isolated eigenvalues and eigenstates are concerned. In order to find those eigenval-
ues and eigenstates one has first to solve equation (10a). If this equation has no solution,
isolated eigenstates do not exist. If there is a solutignt is an isolated eigenvalue of
the combined system, and the corresponding normalized eigenBtais given by (16).

All properties of the isolated eigenstdtg;) can be now easily obtained. For ex-
ample, the probabilityw{ to find this eigenstate in the local stgte) € X¢{ and the
probability densityp’ (k) to find this eigenstate in the unperturbed stad®é)) € X2
are

wi = [(OW)[%, phk) = [(@)| W) (17a)
From (16) one obtains required amplitud€y ;) and(® (k)| ¥;)
T B {(2()|V]B)
(O¥;) = o (@) |W;) = 07 e = ) (17b)
In particular, (15) and (18pimply
wy = ber _ ! (15)

™ Q9E — 1— p2dw(e;)/de;”
Above probabilities satisfy completeness relation

wd +wb =1, wherew) = /pf’(k) dk. (17c)

Probability to find isolated eigenstafté;) in a systemS2 , i.e., probability to find
this eigenstate in any of the stateB(k)) € X2 is wb. Completeness relation (17c)
expresses the fact that total probability to find eigenstége either in a systensy or
in a systemS?, equals one. I1iv¢ > 0.5 isolated eigenstatal;) is S§-dominant, while
if wf < 0.5 itis S -dominant. In the former case one can consider) to be the
eigenstatg®) of a systemS¢ perturbed by the interaction with the syst&ify. In the
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latter case it is more appropriate to consity) as an eigenstate of the systesf)
perturbed by the interaction with the systeéih

Let us now investigate in more detail probability to find isolated eigenstate’;)
in a local statg®). One has lim,_, . wf = 1. One also finds that{ monotonically
decreases as approaches barid,, 1,] from either side. Thus{ assumes a minimum
value at the band boundary. According to (9@mnd (15), one has lim, _,;,— w¢ = 0,
unless in a limitA — A, the function (1) approaches to zero at least quadraticaly.
Similar conclusion applies to lim_,;,+ w% = 0. The probabilityw¢ is hence close to
one for larges;, and it is usually close to zero fey near the banfh,, A, ]. Trivial case is
B = 0. In this case there is no interaction between syst§frendS?,. The statd®) is
hence an eigenstate of the combined system with the eigenkallfeE ¢ [1,, A,] this
eigenstate is isolated, and hencg = 1. If E € [A,, 1] this eigenstate is not isolated,
and hencev{ = 0. Thus ifg = O there is a sharp distinction between two extreme cases,
E ¢ [My, Ap] @NdE € [A4, Ap]. The same conclusion follows from the above relations.
If there is no interaction between systegfsandS?, relation (10a) reduces tg = E,
and if E ¢ [A,, A,] relation (16) reduces tpV;) = |®).

This behavior slightly changes when the coupling is small but nonzerg, 0.
According to (16b) and (17), probability$ is very sensitive on the distance of the
isolated eigenvalue; from the bandi,, A,]. If ¢; is close to[A,, A,] this probability
tends to be small. In view of the estimates (14) this meansttiawill be small if
E € [A4, Ap]l. On the other hand, i ¢ [X,, A,] probability w{ tends to be large.
Quialitatively this is the same behavior as in the cdse- 0, though not with such a
sharp distinction between those two cases8 ¥ 0 there is some intermediate region
where eithelE ~ A, or E =~ A, and wherew{ is intermediate. With the increase of the
coupling this distinction between the regi@ ¢ [A,, 2,] wherew{ is relatively large
and the regiorE € [A,, A,] Wwherew{ is relatively small is increasingly more blurred.

To complete our discussion, note that in the case of the weak coupling and provided
E ¢ [L4, 2], ONe can approximate roet of (10a) as

g1 ~ E+ BPo(E), E ¢ [hahp). (18)

According to (10b) the quantitg?w (E) has a formal structure of the second order
perturbative correction to the eigenvalie Since(®|V|®) = 0 there is no first order
eigenvalue correction. The above approximation is hence identical with a result one
would obtain in a standard perturbation expansion that includes second order eigenvalue
correction.

4.2. Embedded eigenvalues and eigenstates

Consider now the case when the perturbed eigenvwals@mbedded in the eigen-
value bandx,, A,]. We again approximate relations (2) with relations (4) and we look
for a limit n — oo of the expression (7). As increases, intervaldi; = A; — A;_1
between successive unperturbed eigenvalyetecrease andi; — 0. Due to the in-
terlacing rule intervald\e, = ¢, —¢,_; between successive perturbed eigenvatuedso
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decrease, and those eigenvalues become more and more dense in the, basid In
alimitn — oo eache in this band is an eigenvalue of the perturbed equation. Moreover,
since for each finita one has\; < g;,1 < A;41, in this limit functional dependence of
the continuous perturbed eigenvaltien parametek is the same as functional depen-
dence of unperturbed eigenvaluenk, i.e.,e(k) = A(k). It remains to find the structure
of the corresponding perturbed eigenstateés)).

In the appendix we show that in the case of the embedded eigenvalues relation (7a)
should be replaced with

nB2f(e) cot(mx(e)) + fPw(e) + E—e =0, &€ [he Al (19a)
where f (¢) is given by relation (11) and where

_ /kb (OIV]® (k) (@ (k)V|O)
w(E)=P
k e — A(k)

dk, & € [ M) (19b)

In analogy to (10c) functiom () (¢ € [A4, Ap]) Ccan be expressed in terms of the
function f(e):

Ab
w(e) =P % dix, &€ €A, Apl. (19¢)

a
In relations (19b) and (19c) symbdl denotes principal Cauchy integral value.
Those relations extend the definition of the functiefz) to the intervale € [A,, A;]. If
e ¢ [Aq, Ap] this function is defined according to (10b) or (10c), while i€ [A,, As]
it is defined according to (19b) or (19¢). In the former case there is no need to take
principal Cauchy value. Consider, for example, expression (10b). Subintegral function
in this expression is either uniformly nonnegative or uniformly nonpositive in the entire
integration rangé € [k,, k], and hence there is no cancellation of infinite positive and
infinite negative integral contributions characteristic of the principal Cauchy value. The
function w(¢) is hence well defined for each ¢ [A,, A;]. However, in the interval
[A4, Ap] this function may diverge for some isolated values ofMost important such
points are edges = A, ande = A, of this interval. For example, if (A,) # O function
w(¢) diverges in a point = A,,.
The solution to the equation (19a) is a functiog). This function is a “fractional
shift” of ¢ in the intervals(x,_1, A,) and in a limitn — oo. More precisely, for each
finite n one can defingn — 1) quantities

& — )\r—l

e =2,...,n. 20a
)\r_)‘r—l’ ' ' - ( )

X(Sr) =
As n increases, perturbed eigenvalugdecome more and more dense in the in-
terval [A,, A,]. In the limitn — oo quantitiesx(e,) converge to a function(e) of
a continuous parameter Due to the interlacing rule one has<Q x(e,) < 1. Since
cot(0) = cot(r) = +oo, the pointsx(¢) = 0 andx(¢) = 1 are in the relation (19a)
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equivalent. Hence one can identifys) = 1 with x(¢) = 0 and one can restrict frac-
tional shiftx(¢) to the interval0, 1):

0< x(e) < L. (20b)

According to (20a), for each finite fractional shiftx(e,) = 0 (andx(e,) = 1)
corresponds to singular solutions, while all other values(ef) correspond to cardinal
solutions. We use this property in order to extend the notion of cardinal and singular
solutions in a natural way to the limit — co. Accordingly, if x(¢) = 0 the solution is
singular, while ifx(e) # O itis cardinal.

If x(¢) = 0 one has c@trx(¢)) = +oo. Strictly, this value is not a solution
of (19a). However, if one takes a limit ¢atx(¢)) — oo this relation in this limit
describes singular solutions as well. fife) # 0 andw(e) # oo one obtains a finite
value for cotrrx(¢)), and the solution is cardinal. Hence only the c#ge) = 0 and/or
w(e) = oo needs some special treatment and only in this case one may have singular
solution.

For each finiten the solutions of (7a) are discrete eigenvalues In the limit
n — oo and in the bandx,, A,] the notion of discrete eigenvalues looses any meaning
since each € [),, A,] becomes an eigenvalue of the combined system. The information
provided by the eigenvalues in (7a) is in (19a) replaced by the information provided
by the fractional shiftc(¢). This shows an important difference between treatments of
the cases ¢ [A,, Ap] @ande € [, A]. Inthe former case relation (10a) is obtained from
the relation (7a) by the formal replaceménfs) — w(¢) and the solutions of (10a) are
isolated eigenvalues. In the latter case relation (19a) is obtained from the relation (7a)
by the formal replacemern® (¢) — 7 f(¢) cot(rx(e)) + w(e) and the solution to (19a)
is a fractional shiftc(¢). The appearance of the additional tettfi(e) cot(r x(¢)) is due
to the fact that perturbed eigenvalueare now embedded in the continuum, and those
eigenvalues can assume any value in the eigenvalue[bant,]. This additional term
is crucial since it alone contains unknown fractional shit).

The solution of (19a) is trivial:

<s — E — B2w(e)
np2f (e)

This relation expresses fractional shifte) in terms of the local eigenvalug, in
terms of the couplingd, and in terms of functions (¢) and f(¢). If f(¢) = 0 and
h(g) = B?w(s) + E —e # 0 one has(¢) = 0. Fractional shift is zero and the perturbed
eigenvalue coincides with the unperturbed eigenvalue. By definition, this corresponds to
a singular solution. One can justify this conclusion by the following heuristic argument:
One may havef (e) = 0 only if (®|V|®(k)).—,x = 0. However, in this case the state
| (k))e=rx) and the eigenvalue = A(k) corresponding to this state are not perturbed
by the interactiorBV. This state is hence an eigenstate of the combined system, i.e., it
is singular.

Once fractional shift is known, one can proceed to calculate perturbed eigenstates
[W(e)). An important quantity is the amplitud@|W¥ (¢)) that determines probability

1
x(g) = = cot™t
T

), € € [Ag, Apl. (21)
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density p%(¢) = |(®|W¥(e))|? to find the statg®) in the eigenstat¢¥ (¢)). In the ap-

pendix we show that this amplitude can be expressed in terms of the fractional(shift
as

sin(rx(g))

B f(E)

Since fractional shift satisfiesQ x(¢) < 1 one hag®|¥(g)) > 0.
Relations (21) and (22) imply

(B (e)) = £ € [Aq, Apl. (22)

[ B2f(e)
(Ow(e) =1 L72B%12(e) + (B2w(e) + E — ¢)?
0, otherwise

2 B>f (e)
— w2BAfe) + (BPw(e) + E — &)?

1/2
] R if ¢ € [)‘av )\.h], (23&)

p(e) =|(0]¥ (o)) & € [Aas Ap]. (23b)

Relations (23) are valid whenever fractional shift) as given by expression (21)
is well defined. An exception is the poiat= ¢, that satisfiesf (¢.) = 0 and at the
same timei(e.) = 0 (see appendix). We refer to such a point as a point of “anomal
resonance” [4]. In this point expression (21) contains undefined rafi@Ad fractional
shift x(e.) is not well defined. If the system contains any such point, a correction to the
above expressions is required. In particular, in each poiate. expression (23b) for
the densityp?(¢) is corrected by an additional term proportionabte —¢.) [4]. In what
follows we will assume that the system contains no such points, or that such points can
be neglected.

Since|W (¢)) is an eigenstate of the combined system with the eigenvaldensity
p°(e) is a probability density to find the staf®) with the eigenvalue < [A,, A;]. If
there is no couplingd = 0), the statd®) is an eigenstate of the combined system
with the eigenvalueE. In this case and ifE € [A,, A,] density p“(¢) collapses to
as-functionp®(e) = (e — E), while if E ¢ [A,, Ap]0Nne hag®| ¥ (g)) = (B|P(k)) =0
and hencep?(¢) = 0. The same result is obtained from (23b) in a ligit—> 0. If
one includes the coupling, the stat®) has no more well-defined eigenvalue. If the
coupling 8 is relatively weak, two things usually happen. First, due to the interaction
of the systemS{ with the systemS%, the eigenvalugt of the systemS¢ is shifted to
a new eigenvalueg. Second, shifted eigenvalue is usually broadened, and it obtains
some widthAegq. With increase of the coupling, the distinction between the systgmns
and 8%, is increasingly less sharp, and the eigenvalue of the giite= X¢ becomes
increasingly more diffuse. Eigenvalue distribution of this state in the int¢ayali,]
is described in precise terms by the density funciie). In addition to this density,
eigenvalue distribution of the stat®) may also include isolated eigenvalugs If,
namely, the combined system has an isolated eigengiatewith the eigenvalue;,
there is some probabilityw$ = [(®|W¥;)|? to find the statg®) with this eigenvalue.
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Total probability should be one, and hence
> wi+wh =1, (24a)
I
where
We = / p(e) de (24b)

is the probability to find local statg®) in any of the embedded eigenstatgge)). In
the expression (24b) one formally integrates over the entire interl, oo). However,
sincep®(¢) = 0 outside the banfh,, A,], this integration is restricted to this band.

Relation (24a) is a completeness relation that expresses the fact that total probabil-
ity to find the statd®) in any of the eigenstates of the combined system must be one.
This relation can be derived in a more formal way. Since isolated eigengigteand
embedded eigenstat@g (¢)) of the combined system form a complete set in the com-
bined space&X,, each stat¢g) € X, can be expressed as a linear combination of those
eigenstates. In particular, using relations (17) and (23) one finds

Ab
©) = S Vaiwn + [ Ve ) (25)
, a

The summation is performed over existing isolated eigenstatgs i.e., it can
contain zero, one or two terms. For example, if isolated eigenstates do not exist (equa-
tion (10a) has no solution), there is no summation term in the above expression. Nor-
malization condition®|®) = 1 now implies (24).

In order to analyze the shape of the probability dengsftge), define quantityg
[A4, Ap] @S a root of

BPw(eo) + E —e0=0, &g € [AssAp). (26)

In general, this equation may have zero, one or multiple roots in the interval
[Aa, Ap]. According to (23b), if (26) has a roep € [A,, A;,] probability densityp®(sq)
tends to be large.

Equation (26) is formally identical to the equation (10a). However, in the case of
equation (10a) one has the condition¢ [A,, A, ], and the roots of this equation, if any,
are isolated eigenvalues. In the above equation one has the conditigre [A,, A;],
and the roots of (26) are not isolated eigenvalues. One finds that in a limit of weak
coupling and providea (¢) is bounded in the intervdh,,, A,], relation (26) may have
at most one root. We will show that this root should be identified with the eigenvalue
shifted to the positiom, as a result of the interaction of the systéthwith a systems?,.

If f(e0) # O the rooteq of (26) has a simple interpretation. According to (21), if
g satisfies (26) and if, in additiory;(gg) # 0, thenx(gg) = 0.5. The pointe = ¢ hence
corresponds to the perturbed eigenvalue that is in the middle between two successive
unperturbed eigenvalues. This interpretation is strictly valid as longigaéinite (how-
ever large), since only in this case one can say that a perturbed eigesyaduia the
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middle between two unperturbed eigenvalaes, and,. Asn increases and intervals
A\, decrease, more and more perturbed eigenvalues close to the eigepvatado a
very good approximation in the middle between two successive unperturbed eigenval-
ues. Therefore one can loosely say that in the poiat ¢, and in some infinitesimal
neighborhood of this point, perturbed eigenvalue is in a middle between two successive
unperturbed eigenvalues.

If f(e0) = 0, the pointsg = ¢, is a point of anomal resonance. In this case frac-
tional shiftx(gg) is undefined. In general, fractional shifts) is a continuous function
of ¢ except in the points of anomal resonance where it is usually discontinuous [4].

4.3. Eigenvalue distribution of a local state in the weak coupling limit

Eigenvalue distribution of the local stal®) is completely determined by the iso-
lated eigenvalues; (if any), corresponding probabilities¢, and by the probability
density p“(¢). We will now consider this distribution in the case when couplhés
relatively weak.

If B is small, there are two qualitatively different cases, the dase[A,, A,] and
the caseE ¢ [A,, Ap]. There are also two small transition regions where eifhet A,
orE ~ \p.

For small enough8 and providedw (¢) is bounded, equation (26) has a root
g0 € [Aa, Ap] ifand only if E € [A,, A,]. If B is sufficiently small, this root is unique.
According to (23b) and (26), densipf (¢) tends to have a maximum close to the point
e = &, and at this point one has’(sq) = 1/(w2B%f(s0)). Expanding quantities
B2w(e) + E — ¢ and f(¢) in this point one finds:

pPw(e) + E —e= [ﬁz(z—‘:) - 1} (e — &0) + B2O((e — €0)?), (27a)
0
d
f(&)= f(e0) + (d—D (e — £0) + O((e — €0)?). (27b)
0

According to (23b), main contribution to the densiti(¢) comes from those values
of & that approximately satisfge — £0)® < B f2(e) ~ B* f?(go). The quantity(e — eq)
is hence effectively of the orde? (%) and one hag (¢) = f(so) + O(B%) ande — E —
B2w(e) = (¢ — g0) + O(BY). Those approximations improvedf— ¢q decreases, and in
the pointe = gg they are exact. Iff (eg) # 0 this implies

B2 f (e0) .
0% (e) ~ p™(e) = i 7282 f2(s0) + (¢ — £0)2 if & € [Aa, As], 28)
0, otherwise

The position of the pointg can be estimated as

co~ E + B?w(E), E € [rg 2l (29a)
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Functionp®C(¢) is a typical approximation of the exact density distributidiie) in
the case of the weak coupling and providé@,) £ 0 andE € [A,, Ap). If E ¢ [Ay, Ap]
one findsp?(g) ~ 0.

In the derivation of the expression (28) we have assumed:ttetis bounded in
the interval[x,, A,]. This guaranties that for small enougtrelation (26) has at most
one rootey € [A,, Ap]. However, ifw () is not bounded in this interval, there is usually
another root of (26) close to the point wheoé€s) diverges. For exampley (¢) may
diverge in the point = A, on the edge of the barid,, A,]. In this case (26) may have
two roots,eg andey &~ A,. This situation is more complicated. However, dengpitye)
is again relatively well approximated wihf°(s) where the root;, is ignored and where
only the rootgg is taken onto account.

Inside the bandA,, A,] function p*°(¢) is identical to the universal resonance
curve [8]. However, outside this band functipfi’(¢) is zero, while the universal res-
onance curve is nonzero in the entire inter¢abo, co). Thusp?C(¢) equals universal
resonance curve truncated on both edges of the pand,].

If the pointeg € [A4, Ap] is relatively far from the edges of the bafi,, A1,
function p?°(¢) is a bell-shaped curve centered at this point and with a width

Agg = 21 f (e0). (29b)

Integrating density“°(¢) one finds

Z o0 B2 (o) de
a0 ~ _
/M pe) e /oo 2B 250 + (6 —e0)? (30)

The approximation~) is due to the extension of the integration over finite band
[A4, Ap] tO the integration from—oo to +oco. This extension is justified if the point
& = gg is relatively far from both edges of this band, that igef — A,| > Agg and
leo — Al > Agg. Due to the completeness relation (24), if this is the case one has
w{ ~ 0. We refer to the approximation (28), whetge [A,, A;] is relatively far from
the edges of the barfd,,, A,] as aresonance approximation
Close to the edge of the bafi,, A,] integral (30) decreases and accordingly one
of the probabilitiesw{ increases. In particular, if the poiat= ¢ is exactly on the edge
of this band, i.e., if eithegy = A, Or g9 = A, ONe hasf p*(¢) de ~ [ p®°(e) de = 0.5.
Such points correspond to the intermediate region where one has Eitheri, or
E =~ A,. As eigenvaluer drifts way from the bandh,, A,] one obtainsf p%(e)de = 0.
Consider now in more details relative position of the maximum of the approximate
and exact density curves. Approximate dengit{(s) has maximum in the point = &,
while exact densityp?(¢) has maximum in some point,.x. In the pointe = gq ap-
proximate and exact densities coincide, i®€(so) = p*°(p). Let us now estimate the
differenceemax — 0. The condition @“/de = 0 implies

4 m? f(e)?df (¢)/de
(BPw(e) + E — &) df(e)/de + 2(1 — B2 dw(e)/de) f(e)

B*w(e) + E—e=p

(31)
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The pointemay is a root of this equation. Expanding this equation in the point
& = go in terms of a small quantitg one finds

4 T2 f(e0)(df/de)o 6
21— p2daryderor T 0P

Emax — €0 = —f (32)

Thuse, approximatesmay up to the ordei0 (84) in B. In addition, if the function
f(e) is sufficiently small and/or sufficiently flat close to the poigt(that is if (f -
df/de)o =~ 0) then the first term on the right-hand side of (32) can be neglected;gand
approximatesmay essentially up to the orde? (8°) in 8.

In conclusion, in the resonance approximatignsall andE < [, A;]), rela-
tion (26) has a rootg ~ E + B°w(E) € [A4, Apl. In this case probability density
p°(e) has the shape of the truncated universal resonance curve with maximum at the
pointe = gy and with widthAeg = 2782 f (gg). In additionf p%(e)de = 1. If, how-
ever, E ¢ [A,, Ap] and if the eigenvalueE is not too close to the band edges, then
p%(e) ~ 0. In this case there exists either right- or left-isolated eigenstate and the cor-
responding probability equatsf ~ 1. There is also a small intermediate region where
eitherE ~ A, or E =~ X, and whereo“(¢) andw{ are intermediate. This has a simple
and straightforward interpretation. # € [A,, A;] the interactiongV of the systensy
with the systemS‘f;o shifts eigenvalueE of S{ to the eigenvaluegy € [A,, A5]. This
shifted eigenvalue is broadened and it obtains a width Both effects are of the order
O(B2?). Hence in the case of the weak coupling the rqot [X,, A,] of (26) should be
interpreted as the eigenvalue of the systgfin the interaction with the systest,.. If,
however,E ¢ [)\,, A,], the interactionBV shifts this eigenvalue to the isolated eigen-
valuee; ~ E + p?w(E). In this case there is no eigenvalue broadening, and shifted
eigenvalues, is isolated and sharp.

If the coupling B8 increases, density®(¢) deviates from the bell-shaped curve
p%%(e) and maximumemax Of p%(¢) deviates from the maximuma = go of p®°(¢).
Depending on the coupling and on the position of the eigenvaldg approximation
0“%(¢) may fail and equation (26) may have multiple roets- ¢o. In this case density
p°(e) usually has multiple maxima in the intenal,, A,].

5.  Timeevolution of alocal state

Relation (3a) is time-independent. The above method can be easily generalized to
the time-dependent eigenvalue equation

0
|h5|\11(t)) = H|w(@)). (33)

Each solution of this equation can be expressed as a linear combination:

(@) = Zc |W )exp(—ig—’t> + /Ab c(s)|\ll(s))exp(—i8—t> de (34)
1 1 ) K )

I a
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where|¥;) and|¥ (¢)) are eigenstates of the time-independent eigenvalue equation (3a),
while ¢; andc(¢) are unknown coefficients and unknown function to be determined from
the initial conditions.

One usually considers time evolution of a system that is at timeD prepared in
the local state®) e X{. If the system is at time = O prepared in this state, at some
latter timer it will evolve in the statg®(z)) ¢ X¢.

From (25) and (34) one obtains

: " :
Om) =" Vwi|w,) exp(—%) +/ \/,0“(8)|\If(e))exp(—%> de.  (35)
I Aa

One is usually interested in the probability*(r) = [(®]|O(t))|? to find the
state|®(z¢)) at time ¢ in the original statg®). This probability describes decay of
the systemS{ to the systemS%.. One is also interested in the probability density
pk,t) = [(®(k)|O())]? to find the statd®(¢)) at timer in the state|® (k)) e Xl
This density describes probability of a transition of a st@¢r)) at time¢ in a state
|®(k)) € X5,

Consider, first, probabilityw(z). According to (23) and (35) one has

w' (1) = (8] ®)|%, (36a)
where the amplitudé® | (¢)) is

(©lon) = /,0 (&) exp(——) de + Z w! exp( '8”). (36b)

The quantity
~ ict
(1) = / P (e) exp(—;)de (360)

is a Fourier transform of the probability densjt§(¢). Note thatp®(0) = w¢ is total
probability to find the statg®) with an eigenvalue in the band,,, A,].

Let us now investigate general properties of the probabhilityr).

Attimer = 0 one hag®(0)) = |®), and hencav?(0) = 1. As required, this fol-
lows from (36b), since for = 0 this relation reduces to the completeness relation (24).
Consider now probabilityy?(z) in the limitz — oo. According to the general properties
of a Fourier transform lim, ., p%(t) = 0. Hence

lim (©lem) = Zw,exp< IS[t) (37)

There are various possibilities depending on the cougdimgnd depending on the
existence or nonexistence of isolated eigenstate(s).

If there are no isolated eigenstates or if the corresponding probabilitieare
negligible, one has lim, ..(®|©(¢)) ~ 0. In this case in a limit — oo the statg®(z))
contains no component of the local sti#. Therefore after long enough time the state
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|®(2)) is entirely represented as a linear combination of stadé€k)) that belong to the
systemS%.. In other words, time evaluation of a sta€(z)) describes a complete decay
of a systemS¢ to the systenss?,. This decay is due to the interaction between those two
systems and due to the fact that systfn s infinite. One usually has¢ ~ 0 if the
coupling is weak and if in addition local eigenvalfies inside the bandi,,, A,].

Another possibility is that the combined system contains one isolated eigenstate
[W;) with a nonvasnishing probability{ # 0. In this case qualitative behavior of the
eigenstate® (¢)) is different, and one has lim . (©|0(1)) = w{ exp(—ie;t/h). Hence
wi(00) = (w4)2. Therefore, after long enough time the stgde?)) will be found in the
local statel®) with a finite probability(w¢)2. Depending on the probability$, decay
of a systemS{ to a systenS2 will be partial or negligible. For example, if¢ ~ 1 one
hasp®(¢) ~ 0 and hencev’(z) ~ 1. There is no decay, and the stéBr)) ~ |®) is
essentially an isolated eigenstate of the combined system that is only slightly perturbed
by the interaction ofS§ with S2. However, ifw$ < 1 the systensS¢ will decay to a
systemS2,, but only partially.

Finally, one may have significant values for both probabiliti¢sandw$. For this
to happen coupling should be sufficiently strong. In this case (37) implies

. ER — &)t
tll)rgo wi(t) = (wf,’d)2 + (u}‘,ﬁ)2 + 2w] w COS(%).

Accordingly, after long enough time systefif will only partially decay, and in
the limit ¢+ — oo there will be an oscillatory probability to find the stdte(z)) in the
local statg®). In particular, ifw§ = w$ this probability will oscillate between zero and
maximum value (hug)z. Unless the eigenvalue baf,, A,] is very narrow and since
ler —eLl > Ay — Aq, this oscillation will be extremely fast. It is usually quite difficult
to detect such a fast oscillation experimentally. Hence experimentally one should detect
a time-average, i.e., the valae (co) = (w9)? + (w%)>.

In addition to the probabilityw® (¢), another quantity of interest is the probability
densityp(k, 1) = |(®(k)|©(t))|>. By definition, producte (k, t) dk is a probability to
find the statg®(¢)) at timer in the statg® (k)) and in the interval &. One can express
densityp(k, t) as

plk.1) = lutk. 0", (38a)
where
uk, 1) = (@ k)|© (1)) P/, (38b)
In the appendix we show that the amplitudg, ) satisfies
dutk,r) . (D(K)|V|O) /“ e e (E—A (/A e i (E1—A ()
= | (e)e de+ZI:w,e . (38c)

According to (38b) initial condition is(k, 0) = 0. One can now integrate (38c)
to obtain densityp (k, r). However, it is more convenient to express above probability
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density as a function of the eigenvaluénstead of as a function of a parameterThis
can be done by a simple transformation of above expressions.

Let p”(x, t) di be probability to find the stat@® (¢)) at timer in a statd ® (k)) with
the eigenvalue. = A (k) and in the eigenvalue intervahdProbability densitieg (k, ¢)
andp®(x, t) satisfyp(k, t) dk = p”(r, t) dr. Hence

PP 1) = |u (39a)

where the amplitude’ (i, ¢) satisfies

b
du ((ji»,t) _ ,BVf()L |:/ pi(e)e i(e— A)[/hd8+zw eiter— A)t/h] (39b)

a

and whera:” (1, 0) =
Relation (39b) can be integrated to obtain

b i(e=Mt/h __
WO = BN [/ prele d8+Zw,

e—A

[e i(ej—M)t/h _

1 } . (40a)

It is easy to solve (40a) by performing the required integration in this expression.
Note in this respect that the subintegral function in (40a) has no singularity in the point
& = A, since the apparent singularity in this point is removable.

One can also expand the subintegral function in (40a) in the power series in

ot (e)le e 1) (i) "
/}\ p— de = ; — <E> L—1(D), (41a)

a

where

Ab
IL,(A) = / o) (e —=N)"de, n=0,1,2.... (41b)
A

a

For very small times one can approximate e€xfge — A)t/h) ~ 1 —i(e — A)t/h.
With this approximation and using completeness relation (24) one finds

Wb O 1) ~ —i%ﬁ,/f(k), (42a)
b o h
The solution to (39b) can be expressed in yet another form
_ gier—mt/h _ 1
ub(r, 1) = ﬂ,/f(k)[ - |/ “(t)é /M dr + Z ol pap— ]], (40b)
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where p“(¢) is a Fourier transform (36¢) of a density distributipfi(¢). Using (36)
amplitudeu® (1, 1) can be also expressed in terms of the amplit(€@lg (1))

ub, 1) = —if}\/f()u)/ (©]e@))e* /" d. (40c)
0

This expression provides an interesting connection between the amgliueeér))
that determines probability“(r) and the amplitude® (i, ¢) that determines probabil-
ity density p®(%, 7). Note that, unlike expressions (40a) and (40b), expression (40c)
contains no reference to the isolated eigenvalyend corresponding probabilities; .

As required, forr =0 all above expressions give’(1,0) =0 and hence
p’(x,0) = 0. Ast increases, one obtains nonvanishing probability density., ¢)
to find the staté®(¢)) in the statg® (k)) that has eigenvalue = A(k). If there are no
isolated eigenstatesf = 0) there is a well-defined limijp?(x, 0o) = lim,_ o p* (A, )
to find local stateé®) after long enough time in the staté (k)). Otherwise for big times
probability densityp” (1, t) exhibits an oscillatory behavior. Probability to find the state
|®(¢)) at time in the systemS%, that is to find it in any of the statg® (k)) € X%,
equals

Ab
wh(r) = / PP, 1) dh. (43a)
a
Relations of completeness require
w (1) + wh (1) = 1. (43b)

This relation should be satisfied for each time

5.1. Decay of a local state in the weak coupling limit

In the weak coupling limit above probabilities and probability densities simplify. If
relation (26) has a roay € [A,, A,] and if 8 is relatively small, one has?(s) ~ p®(e).
If, in addition, |eg — A,| > Agg and|eg — A,| > Agg (resonance approximation) one has
>, wi ~ 0. Amplitude (36b) can hence be approximated as

Ab . o )
elom)~ / Pe) exp(—%)de ~ / p*%e) exp<_%>d8,
ha .

This integral has an exact solution
(0]© (1)) ~ eieo! /Mg B (eolt/h, (44a)

Hence

w' (1) &~ w(r) = e 2o/, (44b)
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This expression describes exponential decay of the giateThe mean lifeAr of
this state is

A
- 2nB2f(s0)
This is consistent with the widtheq = 2782 f (o) of the shifted eigenvaluey:

At (44c)

AggAt = h.
In the same approximation amplitudé(x, r) is found to be (see appendix)
e B2 f (et [hgieo—M)t/h _ q
B2 f (e0) +i(e0 — A)

uP(r, 1) ~ u®(n, 1) = iV f(L) (45)

Probability densityo” (1, t) is hence

PP, 1)~ p"0(k, 1)
B B (M)
 2B4f2(g) + (g0 — 1)2

% [e—wzf(so)r/h _ g B f(e)t/h COS(“";J”) + 1], (46a)

In particular, ifr = 0 one obtains as requireef®(x, 0) = 0, while in a limit
t — oo one has

B2f (%) A
m2B4f2(e0) + (e0 — 1)?  f(e0)
More precisely, (46a) reduces to (46b) if2° f (co)t /1 > 1. This condition reads

h
- _A
' B e

Thus approximation (46b) applies to such timdisat are bigger than the mean life
At of the statg®). According to this expression, in a resonance approximation and in
a limit 1 — oo transition probabilityp” (i, oo) approximately equals resonance curve
p“%(1). Sincep® (1) has maximum at the pois, transition probabilitye? (1, o) has
maximum at the pointmax & &o.

If one integrates probability densipf°(x, ¢) over allx € [A,, A,] One obtains (see
appendix)

PP, 00) = P ~ p°(1).  (46b)

Ab
w’ (1) ~ / PO, 1) dk = 1 — e 2P Eot/h, (47)
Aa

Relations (44b) and (47) are in accord with the completeness requirement (43).

If E ¢ [\, Ap] is Not too close to the band edges angBifs small, one has
[ p*(e)de = 0. In this casg®(r)) ~ |©) and there is no decay. Hene€(r) ~ 1
andp’(r, t) ~ 0.
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6. Generalized eigenvalue equation

In some cases one has to consider more general problems where instead of the
eigenvalue equation (2a) one has generalized eigenvalue equation

B|® (k) = A(k)S’| @ (K)), k& € [k, kp], (2d)

whereB andS’ are Hermitian operators whilg® is, in addition, positive definite. Eigen-
stateg® (k) can be now orthonormalized according to

(@(k)[S|®(K)) = 8(k — k). (20)
In addition, instead of the eigenvalue equation (3a) one has a more general eigen-
value equation
H|W) = eS|¥), (3d)
where
H=A+B+8V, S=0)(O|+S + P (3b)

and whereSis a positive definite Hermitian operator.

It is easy to modify all obtained results in order to find corresponding relations
for the above generalized problem. In particular, and as suggested by the relations (7)
and (8), operatoY should be everywhere replaced with- ¢P. For example, functions
f () andw(¢) generalize to

(OV — eP|®(k))(D(k)|V — eP|®)

)\' = ’ )\' )‘-zu)‘- ’
F) (k) dk ot €l bl
kp _ _
() = P/ (OV — eP|D(k))(D(k)|V — eP|O) dh. &€ (—00.00).
k e — Ak)

a

One can again express(e) in terms of f(A) according to (10c) and (19c), and
relations (10a) and (19a) that refer to the eigenvalues of the combined system are still
valid. In the case of isolated eigenstates relations (16) are modified to

b (DK)IV —g/P|O
ke er — A(k)

1 )
W) = W|:|®) + B |CI>(k))dk:|, er & [Mas Apl,
I

where
% (OIV — A(k)P|® (k) (D (k)|V — L(k)P|O)
ke (e — A(k))?

kp
—ﬁZ/k (BIP|® (k))(® (k) |P|©) dk.

Q;=1+p% dk

In a similar way can be modified all other expressions.
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7. Example interaction of a single state with one-dimensional solid in the
nearest-neighbor tight-binding approximation

In order to illustrate suggested method, consider the following simple model. As
a systemS’, take one-dimensional solid in the nearest-neighbor tight-binding approxi-
mation [2,7]. With each site of this solid is associated a single sfategf = 1,2, ...).
In this approximation one assumes matrix eleméintd|i) between states on the same
atomic site to equat, and matrix element§|H|j) between states on the adjacent atomic
sites to equaj. All remaining matrix elements are zero. This model is widely used in
chemistry where it is known as a Hiickel approximation [7]. Without loss of generality
one can assume = 0 andy = 1. The only effect of this assumption is the redefinition
of zero eigenvalue and of eigenvalue rescaling. Eigenvalyesd eigenstategb;) of
such one-dimensional solid containing@toms are [7]:

11]>|]), i=1,...,n.

2 n
a=2cod —2—i), |D;) =,/ > sin d
n+1 n—{—lj:1 n
(48)

We refer to such a solid as a Huickel chain. Sys&mis an infinite Huickel chain,
which is obtained in the limit — oo. In this limit eigenvalues.; are replaced with a
continuous functiork (k) = 2 cogk) of a parametek (0 < k < ), and discrete eigen-
stateg®;) are replaced with continuous eigenstdisk)):

A(k) = 2cogk), |D(k)) = @Zsin(jk)m, 0<k<m. (49)
j=1

Relations (49) give all necessary information for the sys&m This system con-
tains a single continuous eigenvalue barié) in the interval[A,, A,] = [—2,2]. The
systemS; contains a single stat@®) with the eigenvalugE. An arbitrary interaction
betweenS] and S, can be written in the formgV (8 > 0) where matrix element
of the Hermitian operato¥ between the statg®) and jth state of the Hiickel chain
is (®|V|]j) = B;j, and where this operator is normalized according@yv?|®) = 1.
This normalization is equivalent to the conditi@j ﬁf = 1. Hence and from (49) one
obtains

2.,
<®|v\q>(k))=\/;2ﬁj sinkj), (50a)
j=1
Y p=1 (50b)
J

Relations (50) describe an arbitrary interaction of the local $&@tevith the infi-
nite Hickel chain. In this general form the stg®® is allowed to interact with each state
|j) of the Hickel chain. Usually this interaction is confined to few initial states close
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E
O-t-o—o—0—0—0

|©) 1 12) 13) 14) 15)

Figure 3. Interaction of a local stat®) (systemS{) with the infinite one-dimensional solid (Huckel

chain) in the nearest-neighbor tight-binding approximation (sysﬁém State|®) has eigenvalu& and it
interacts with a first atom of the one-dimensional solid. Coupling parameger is

to the surface of a solid. For the sake of simplicity we will assume that local |€date
interacts only with the first statd). In this case (50) reduces to

2
(BIV|D (k) = \/;sin(k), (51)

where(®|V|1) = B, = 1. This situation is shown in figure 3.

FunctionA (k) as defined in (49) is nonincreasing in the intefval, A1, while we
have assumed in the theoretical considerationsittiatis nondecreasing. This can be
easily corrected by a formal replacement of a parameteith a parametek’ = = — k.
However, we prefer not to change the expression (49) for this function. Instead, in the
definition (11) of the functionf (¢) one should take the absolute value of the derivative
dx/dk in order to ensure the nonnegativity ffe).

Relations (11), (49) and (51) imply

1 22
=—/1-—, re[-22] (52)
a=2cogk) T 4

Hence and from (10c) and (19c)

_P/ )LZ/ dr, &€ (—o00,00). (53)

sin(k)
T

f) =

w(e) =

One can integrate this expression to obtain

(e+Ve2—4), ife<-2
w(e) = > g, if ¢ €[-2, 2], (54)
(e —Ve2—4), ife>2

We have now all necessary information for the description of the combined system
S =8 DS

In the following discussion we will make frequent reference to the “weak” and
“strong” coupling between subsysteidé andS?, of a systemS.,. Since the interaction
between adjacent sites of the Hlickel chain is normalized 40 1, couplings is weak
if B« landitisstrongifd > 1orif 8 ~ 1. Only if 8 « 1 one can consider
the state|®) € X{ to be loosely bound to the Huckel chain. If, however~ 1 or
B > 1 interaction between two adjacent sites of the Hilickel chain is smaller or at best
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approximately equal to the interaction of the local st@teand this chain. This is strong
coupling.

7.1. Isolated eigenstates

Let us first consider isolated eigenstates of the combined syStemFunction
w(g) given by the relation (54) is continuous on the entire real axis. In particular, in
the pointsh, = —2 andi, = 2 this function is finite:w, = w(A,) = —1 andw, =
w () = 1. There are hence finite critical points that determine existence and nonexis-
tence of the isolated eigenstates. According to (13) one has

EL=_2+ﬁ2’ ER=2_132’ (55a)
BL=QR+E)Y? ifE>-2 Br=@2—-E)Y? ifE<2 (55b)

Considered as a function @f, necessary and sufficient condition for the existence
of the left-isolated eigenstate I5 < E;, while necessary and sufficient condition for
the existence of the right-isolated eigenstat& is Eg. In particular, if8 < +/2 then
E; < Eg. Inthis case and it € [E;, Ex] no isolated eigenstate exists. However, if
the coupling is as strong g> /2 thenE; > E. In this case for each at least one
isolated eigenstate exists. In additionEife [Eg, E; ] both isolated eigenstates exist.
Considered as a function @f, if E > 2 right-isolated eigenstate exists for each value
of 8. If, however,E < 2, necessary and sufficient condition for the existence of this
eigenstate i$ > Bz. Similar conclusion applies to the left-isolated eigenstate.

Inserting (54) into basic relation (10a), rightz(> 2) and left-(¢;, < —2) isolated
eigenvalues are found to satisfy

%Z(SR—,/SIZQ—4)+E—5R:0, er > 2, (56a)
%2<8L+,/e§—4>+E—8L=0, e <2, (56b)

Those equations have a solution

_ E(B? —2) + B*VE2+ 482 - 1) it £ > 2 g2 (57a)

ER

2(8%2-1)
2 _ 2\/#
 _EB -2 253 : _E1)+ W=D hpopgo2 (57b)

Isolated eigenvaluesy ande; are eigenvalues of the infinite systefg,. One can
compare those eigenvalues with corresponding eigenvalues of a finite s§stentso-
lated eigenvalues &, 1 can be defined in the following way: All eigenvalues of a finite
noninteracting Huckel chain satisfy2 < A; < 2. Interlacing rule implies that, once the
interactiong # 0 is included, perturbed eigenvalugsalso satisfy-2 < ¢, < 2, except
possibly the smallest eigenvalagin(n) = 1 and the largest eigenvalygax(n) = &,41
(see figure 2). Since in the limit— oo eigenvalues of an infinite noninteracting Hiickel
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chain assume all values in the interyal2, 2], one should identifyemax(n) with right-
isolated eigenvalue (n) if and only if emax(n) > 2. Otherwise right-isolated eigenstate
does not exist. Similarly one should identify;,(n) with left-isolated eigenvalue; (n)

if and only if emin(n) < —2. Otherwise left-isolated eigenstate does not exists. Ac-
cordingly, Ez(n) is a right-critical point ofS, 1 if E < Eg(n) implies emax(n) < 2,

and if, in addition,E > Eg(n) implies emax(n) > 2. Thus if E = Ex(n) one should
haveemax(n) = 2. Similarly is defined left-critical poinE; (n). SinceS, 1 is a finite-
dimensional system, this system can be solved by a standard diagonalization method. In
this way one can find isolated eigenvaluggn) andsz(n). Those eigenvalues can be
compared with eigenvalues andey given by expressions (57). If those expressions are
correct, as: increaseg; (n) should converge te; while ez (n) should converge tey.

The comparison of; andeg(n) is shown in figure 4. In figure 4(a) are compared
right-isolated eigenvalues; of an infinite systemS,, (solid lines) with right-isolated
eigenvalues (10) of the corresponding finite systefig,; that contains Hickel chain
with n = 10 atoms (dashed lines). Quantitigsandeg(n) are plotted as functions of
the local eigenvalué for four selected values of the coupliffy If the eigenvaluesy
does not existE < ER) we seter = 0, and similarly if the eigenvalueg (10) does
not exist £ < Ex(10) i.e., emax(10) < 2) we setex(10) = 0. If there is no interaction
(B = 0) right-isolated eigenvalue equals local eigenvaleie = E), and critical point
of S, is Ex = 2. As the interactiorg increases, eigenvalug also increases, and the
onset of a critical poinEzx = 2 — A2 moves to the lower values of the eigenvaltie
Note thatEr(n) > Er and if E < Eg neithereg nor sz (n) exists. Hence one should
comparesg andeg(n) only for those values of that satisfyE > Ep.

The curves andeg(10) in figure 4(a) are very close to each other and they dif-
fer to any significan amount only in the vicinity of the critical point. In particular, in
the interval between critical pointSz and E(10), right-isolated eigenvaluer exists,
while right-isolated eigenvalueg (10) does not exists. With the increaseroéigenval-
ueseg(n) converge to the eigenvalug. This convergence is shown in figure 4(b). In
this figure differencef\er(n) = er(n) — ey for the curveg = 0.8 from figure 4(a)
are given. In order to emphasize the convergencez¢f) to s, vertical scale in fig-
ure 4(b) is amplified by the factor 1Qelative to the vertical scale in figure 4(a). As
n increases, eigenvalueg (n) converge very fast to the eigenvalag. The only sig-
nificant discrepancy is in a region close to the critical pdigt= 2 — % = 1.36 and
on the right-hand side of this point. However, this region also decreases with the in-
crease ofi. Thus one findsAez(20) < 107 if (E — Eg) > 1, Aeg(80) < 10715
if (E— Eg) > 0.2 andAeggz(320 < 10 if (E — Eg) > 0.03. The dimension
of the region where differs from sx(n) by more than 10*® uniformly decreases
with the increase ofi. One can also consider the convergence of the critical points
Ex(n) to the limit critical pointEx. One finds:Ez(10) = 1.4181818..., ER(80) =
1.3679022 ER(160 = 1.3639752 Ex(320) = 1.3619937. Those numbers converge
to Ex = 1.36. Moreover, a linear extrapolation of last two values agairiat dro-
duces estimat& (co) = 1.3600123. This agrees up to five significant figures vkith
Quadratic extrapolation of last three values givggoo) = 1.3600000. This agrees
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Figure 4. Isolated eigenvalueg of an infinite systemSy, and eigenvaluesg (n) of the corresponding

finite systemsS,, 1 given as functions of the local eigenvalée (a) Eigenvaluegp (solid lines) and

corresponding eigenvalueg (10) (dashed lines) for few selected valuesfof(b) DifferenciesAeg (n) =

eg — egr(n) for few selected values af. Coupling isg = 0.8 from figure (a). PoinEg = 2 — 2 = 1.36
is a critical point for a systerSso.



130 T.P. ZivkovE'/ Interaction of a single state with a known infinite system

with E up to eight significant figures. Those extrapolations demonstrate convergence
lim, oo Er(n) = Eg

Once the eigenvalug is known, one can find the corresponding isolated eigenstate
|¥;). According to (16) one has

sin(k)
[|® + B/ = /081 200&k>|q>(k))dk], (58a)
where

2 —4, ifeg = -2,
0,=1-p%CE) 4, B ig’ Ve ner= LS (58b)
2/s2_4

W) =

B dé‘[ — 4, |f81—8R>2

and wheres; is given by (57).

In particular, the probabilityv$, = |(®|Wg)|? to find the right-isolated eigenstate
|W) in alocal statg®) and the probability densitys (k) = |(® (k)| ¥g)|? to find this
eigenstate in the stajé (k)) are

Wi = 1 , ER > 2, (59a)
L+ (B/D((er — % — D/\[¢5 — %)
by 2p?
PR = e 2cosh) 2
« Sie (k) . kel-22.  (59b)

1+ (B2/2)(ex — \Je3 — /[ —

Similar expressions are obtained for the probabilify= |(®|W¥,)|?> and probabil-
ity density o} (k) = [(® (k)W) |2,

One can compare above quantities with results for a finite system In par-
ticular, one can compare probabilitieg, with corresponding probabilities, . (n) for
the systemsS, ;1. Note thatw?_(n) = [(®|¥,,1)|? is a probability to find eigenstate
[Wmax) = |¥,41) With the maximum eigenvalug,ax = ¢,.1 in the local staté®). This
probability equals probability (n) wheneveremax > A, = 2. However, ifemax < 2
probability w (n) drops to zero, while probabilitwy, () is still different from zero.
For the purpose of comparison with probabilitias;, it is more instructive to use prob-
abilities wy,,,(n) instead of probabilitiesv$ (n), since those former probabilities differ
from w¢ to any significant amount in much larger range. In particulai it< Ex
probabilitiesw$ andw$(n) are both zero, while probabilityy,,.(n) differs from zero.

In figure 5 are compared in this way probabilitie$ (solid lines) with probabilities
whax(n) (dashed lines). Those probabilities are given as functions of a coupling
figure 5(a) probabilitiesv}, are plotted for few selected values Bf Those probabilities
are compared with corresponding probabilite$,,(10) for the finite systemsSio.1
containing Huckel chain with 10 atoms. H > 2 right-isolated eigenstate exists for
each value of8 (curveE = 2.5). If E < 2 there is a critical poinBgr = +/2 — E such
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a
max

Figure 5. Probabilities}, (solid lines) andufj,5x(n) (dashed lines) as functions of the couplffig(a) Prob-

abilities wé andwf,5,(10) as functions of for few selected values of the local eigenvaltie(b) Conver-

gence of the probabilitiesi,5x(n) to the probabilityw$, asn increases. Probability}, is line £ = 1.9
from figure (a) and critical point for the corresponding infinite systis Sg = /A, — E = 0.3162.
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that for 8 < Bz no isolated eigenstate exists (cuie= 1.9 with a critical point8; =
/0.1 = 0.3162 and curveZ = 1 with a critical point8z = 1). CaseE = 2 is a border
case when isolated eigenstate exists for gaeh0. The convergence of the probabilities
wi (1) to the probabilityw$, asn increases is illustrated in figure 5(b). Probabilit§;
(solid line) is lineE = 1.9 from figure 5(a). Dashed lines are probabilities, (n) for
various values of. Since each probabilitw$ (n) equals probabilitywy,,.(n) truncated
below the critical pointz(n), and since lim_, ., Br(n) = Bg, this also demonstrates
the convergence$ (n) — w¢ with the increase of.

7.2. Embedded eigenstates

Consider now embedded eigenstates of the combined systeninserting (52)
and (54) into (21) fractional shift(¢) is found to be

(8(1 — B?/2) — E
p2J1- /4

According to (23) probability density“(s) = |(®|W¥(¢))|? to find local stat¢®)
in the perturbed eigenstat® (¢)) is

B2/1—¢2/4

TBr(1—e2/8) +n(B2e/2+ E — ¢)?’

One can compare this probability density with probabilities = |(©|¥,)|? that
are obtained in the case of the finite combined sysfem. Since in the limitn — oo
probabilitiesw? are replaced withp“(¢)ds, one should compare densjt (s, ) with dis-
crete probabilityw? normalized per unit interval, i.e., one should compatftés,) with
the ratiow?/Ae, whereAe, = ¢, — ¢,_1. Slightly better choice is to use the average
of the intervalsAe,,; and Ae, on both sides of the eigenvalue instead of the inter-
val Ag, alone. From this comparison isolated eigenstates, if any, should be excluded.
In addition, the smallest and the largest eigenvalue that in a#imit co converge to
some point inside the barid,, A,] should be separately normalized, since for the pur-
pose of normalization only the intervalse, that are inside the band.,, A,] can be
utilized. Hence ifS,, contains no isolated eigenvalue, extreme eigenvalueside,, . ;
of S,+1 should be normalized according Wy = wi/As; and Wy, | = wy . ,/Ag,y1,
respectively. Accordingly, in the absence of isolated eigenstates we make the following
comparison

1
x(e) = — cot
T

), e e[-2 2. (60)

pi(e) = g e[-2 2] (61)

a
wy

, if r =1,
Aé‘z
wy fr=2
Ye) < W =] . , ifr=2,...,n, 62
PHED < W= e+ Ao 2 (62)
W11 ;
= if r = 1
A811+l’ ' "
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If the systemS,, contains left-isolated eigenstate one should in the above expres-
sion replacev] / Ae, with wg / Aes, while if this system contains right-isolated eigenstate
one should replace,, ,/Ae,, 1 With wi /Ae,,.

In figure 6 is compared in this way continuous probability dengitye) (dashed
lines) with normalized discrete probabiliti&g (vertical columns) for the caseé = 0.5
and g = 0.9. In order to emphasize the convergence of probabilii€sto p“(e)
asn increases, density“(e) is compared with probabilitiesV¢ for the systemSs, 1
(figure 6(a)) and with probabilitie®’¢ for the systenSioo41 (figure 6(b)). Even in the
case when the systef),; is as small ag = 5, the agreement of probabilitié®” with
the continuous density distributigrf (¢) is quite good. Standard deviation of normalized
probabilitiesW,* from the corresponding densiti@$(s,) (r = 1,...,6) is A =~ 0.029.

In the casex = 100 the agreement between probabilitiés and corresponding densities
0%) (r = 1,...,10)) substantially improves, and one finds~ 0.00056. If one
excludes pointsVy and Wi, that are least reliable and that are close to the edge of the
interval [—2, 2], standard deviation drops 1 ~ 0.00004. In general, with the increase

of n results for a finite systers§, 1 rapidly converge to the theoretical valpé(e). In

figure 6 systens,, without isolated eigenstates is considered. However, the agreement
is equally good in those cases whgg contains isolated eigenstates.

If the coupling is weak and if the relation (26) has a regte [—2, 2], one can
approximatep?(e) with resonant curvg“®(g). One finds

_2E
=5

If % < 2 and sinceEr = 2 — B2 andE; = B — 2, above condition is equivalent
to the requirement that there are no isolated eigenstates. Hence in the case of the weak
coupling and ifl E| < |2 — p?| completeness relation (25) impli¢sp?(¢) de = 1.

According to (28) approximate densipf°(e) is

B2./1—¢€2/4
° ¢ e[=22]. (64)

BHL— &2/ + 7 (e — £0)?’
This is a universal resonance curve centered=ateg and with a width

2
Aso= 2821 - %0. (63b)

If |[E| > |2— B2| relation (26) has no root in the interv@l,, A,], and hence
0%(e) = 0. If the coupling is weak, this impliep?(¢) ~ 0. Also the condition
|E| > |2 — B2?| guaranties the existence of at least one isolated eigenstate. However,
if the coupling is strong, the approximation (64) fails, and one should use exact expres-
sion (61).

In conclusion, in the case of weak interaction and providgd< |2— 82| the effect
of the interaction is that local eigenvaldgshifts to the eigenvaluey, and this shifted
eigenvalue broadens t®e,. There are no isolated eigenstates and hgne&e) de = 1.

&0 e[-2,2] if |EI<|2- 4 (63a)

p*%e) =
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Figure 6. Density distributiop® (¢) of a systemSs, (dashed lines) and normalized probabiliti&$' of
the corresponding syste&), 1 (vertical columns) in the casé = 0.5 andg = 0.9. Each vertical column

is situated at the positions, of the corresponding perturbed eigenvalue and the height of this column
is normalized probabilityw;.

(a) Quantitiesw,’ refer to a systenfs 1. (b) QuantitiesWy refer to a
systemS100+1.
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If, however, |E| > |2 — B?| there exist at least one isolated eigenstate, and hence
[ p“(e) de < 1. In this case the approximation (64) fails.

We comparep®(¢) with resonant curve approximatiqetO(e) in figure 7. In this
figure caseE = 1.7 for two qualitatively different values of the couplirgjis consid-
ered. Infigure 7(a) exact densjf (¢) (solid line) is compared with approximate density
0“%(¢) (dashed line) for the coupling = 0.3. In this case there is no isolated eigen-
state and hence? = [ p“(¢)de = 1. Though interaction is relatively strong, density
p%%(¢) is quite good approximation of the exact densiti(e). Due to the interaction
eigenvalueE = 1.7 shifts to the new positiony = 1.7801 and it broadens to the width
Agg = 0.082. Note that maximum of the exact densiti(e) is emax = 1.7821, while
approximation (29a) yieldsy, ~ 1.7765. In general, the roat of (26) is much better
approximation of the true maximumy,ax of p“(¢) than the approximation (26). In fig-
ure 7(b) coupling is quite stron@ (= 1.1). The density?(¢) is now very different from
a resonant curve and approximatipf?(¢) fails. In particular, relation (26) has no root
&0 € [Xa, Ap]. In addition, one findsv? = [ p“(e) de = 0.34506 < 1. Eigenvalue dis-
tribution of a statd®) hence includes contribution of a right-isolated eigengtétg in
addition to the density“(e). Using (57a) one finds isolated eigenvaliye= 2.36642.
Probability to find local staté®) in the eigenstate&¥y) is given by (59a) and one finds
w% = 0.65494. Hencevy + w¢ = 1 in accord with completeness relation (24). Note
also that in this case approximation (18) fails, and hence it is not possible to eptain
within the standard perturbation expansion.

Completeness relation (24) is verified in more details in figure 8. In this figure
probabiliiesw, w% andw? = [ p“(e) de as well as their sumw¢ + w¢ + w% are
plotted as functions of a coupling. This is done for two qualitatively different values
of the local eigenvalué. In figure 8(a) one ha& = 1.5 € [A,, A,]. There are hence
two critical points, a critical poinBr = +/2— E = 0.70711 for the right-isolated
eigenstate, and a critical poift = ~/2+ E = 1.87083 for the left-isolated eigenstate.

If B < Bg there is no right-isolated eigenstate, whilgit< g, there is no left-isolated
eigenstate. If the coupling is as small@s= [0, Bz] no isolated eigenstate exist. One
hasw¢. = 1 and the stat@) is a linear combination of the embedded eigenstakes))
alone. If8 € [Bg, B.] only right-isolated eigenstatd ;) exists. The stat@®) is hence

a linear combination of this eigenstate and embedded eigenslates. In this case
w¢ +w$ = 1. Finally if 8 > B, both isolated eigenstates exist and they both contribute
to the local statg®). In this casew{. + w% + wi = 1 in accord with completeness
requirement (24). In figure 8(b) one h& = 2.1 > ,. In this case right-isolated
eigenstate exists for each valuefpfHowever, left-isolated eigenstate exist if and only
if B> B, = 2.02485. One again finds¢. + w$ + wj = 1in complete agreement with
the relation (24).

In the entire intervaB e [0, 3] shown in figure 8 theoretical probabilities., w{
and w$, are in perfect agreement with completeness relation (24). This demonstrates
that, unlike standard perturbation expansion, the suggested approach does not suffer
from any convergence problem, and the obtained relations are equally efficient for each
coupling, however strong. The only case when a caution is required is when the system
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Figure 7. Eigenvalue distributions of the local stge in the caseE = 1.7. (a) 8 = 0.3. Density distrib-

ution p?(¢) is relatively well approximated with truncated universal resonance caff%€). No isolated

eigenstate exist. Typical for such weak coupling is eigenvalue shift and eigenvalue sprefid= ().

Approximationp”o(s) fails and density distribution is distorted. In addition, eigenvalue distribution of the
state|®) contains isolated eigenvalug.
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Figure 8. Probabilitiesv , w} andwf. = [ p“(¢) de as functions of a coupling for two qualitatively
different values of the local eigenvalde (a) E = 1.5. (b)E = 2.1.

contains some anomal poiat= ¢. [4]. In this case one may havef. + w$ + w{ < 1.
Missing probability is due to anomal point contributions. Those contributions can be also
expressed in a closed form, which restores validity of the completeness relation (24) [4].
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7.3. Time evolution of a local state

If the combined systens,, is at timer = O prepared in a local stat®) e X{,
at some later time it will evolve in the statd®(¢)). Probabilityw(¢) to find the state
|®(¢)) at timer in the initial statg® (0)) = |®) is a square of the amplitud®|© (¢r)).
This amplitude is given by basic relation (36b). In our casée) in this relation is
density (61), isolated eigenvalueg are given by (57), while the corresponding prob-
abilities w{ are given by (59a) for the probability$ and by an analogous expression
for the probabilityw?. Similarly, probability densityo®(x, ¢) for the transition of the
state|® (7)) at timet in any particular statéd (k)) € X%, is a square of the amplitude
ub (1, t). This amplitude is given by basic relation (40a) where quantjties andp®(s)
are expressed by (52) and (61), respectively. In order to verify relations (36b) and (40)
one can compare probability®(r) and probability density?(x, ¢) obtained by those
relations with corresponding probabilities for a finite combined systgm.

In figure 9 combined systeri,, with local eigenvalueE = 1.5 and with two
qualitatively different values of the coupling is considered. In this figure probabili-
tiesw(¢) (solid lines) are compared with corresponding probabiliti¢¢ ) for selected
finite combined systems,,; (other lines). Those probabilities are given as functions
of time¢. Time is expressed in units/y wherey is a resonance interaction between
adjacent atoms of a Hickel chain. This is a natural time unit for a model considered.
In the case = 0.6 (figure 9(a)) systens,, contains no isolated eigenstate, and hence
after long enough time the stat® (r)) makes a complete decay to the syst8fn i.e.,
lim;—. w“() = 0. In order to illustrate the convergence wf(¢) to w“(t) asn in-
creases, probability () is compared with successive probabiliteg(r), w{,(z) and
w4o(t). For small times probabilitieswy; (¢) follow theoretical curvew“(r). However,
each curvew!(r) at some large enough timéseparates fronw“(z). As n increases
t" also increases. In the cage= 1.5 (figure 9(b)) systend,, contains right-isolated
eigenstatg W) and the staté®(z)) only partially decays to the syste&f,. This de-
cay exhibits damped oscillations, and for large times probabilityr) converges to
(w%)? = 0.36165. This probability is compared with probabilitieg,(t) andw(?).
For small times probabilities); (¢) again follow theoretical curve’(t), while at some
large enough timé each curvav: () separates from“(¢). Asn increases this point of
separation again shifts towards higher values of

Above property is quite general. Each probabilityf(z) of a finite systemS,1
reproduces theoretical probability’ () of the corresponding infinite systef, up to
some pointt = ¢'. If t+ < ¢’ probability wi(¢) is virtually identical to the theoretical
limit probability w“(z). However, if: > ¢’ probability w¢ (z) deviates significantly from
wi(t). Asn increases the point = ¢’ increases approximately linearly with In
addition, the agreement betweetj(r) andw () for small values of also improves.
Accordingly, probabilitiesv? (r) converge to the probability“ () for an infinite system
Soo, 1€, lIM, oo wi (1) = w(2).

In figure 10 are compared exact probabilitie$(r) (solid lines) with approximate
exponential decay probabilities?®(¢) (equation (44b)) for the casé = 1.0 and for
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: B=0.6

Figure 9. Probabilitiesv® (¢) (solid lines) and probabilities (r) (other lines) in the casg = 1.5 and for

two qualitatively different values g8 (times in units ofi/y). (a) 8 = 0.6. There is no isolated eigenstate

and the statg®) completely decays in the syste’ﬁﬁo. Probabilityw?(r) is compared with corresponding

probabilities for finite combined systen¥s 1, S10+1 andSop41. (b) B = 1.5. Right isolated eigenstate

exists and the decay of the sta&) in the systemS‘é’O is oscillatory and only partial. Probability® (¢) is
compared with corresponding probabilities for finite combined sys®ms; andSogy-1.

four qualitatively different values of a coupling. In figure 10(a) couplingd = 0.1
is relatively weak and the probability“°(¢) is a good approximation af“(z). In this
case one has a standard exponential decay of a|&&g. In figure 10(b) coupling
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B = 0.5 is much stronger an@“°(¢) is not such a good approximation of (r). The
same applies to the cage = 0.95 (figure 10(c)). Finally, in figure 10(d) coupling
B = 1.5 is very strong, the systet,, contains right-isolated eigenstate, and resonant
approximationw?®(r) fails.

Figures 9 and 10 illustrate global decay of a st#&é¢¢)). One can analyze this
decay in more details by analyzing probability densitiési, ¢) for the transition of
the statg®(¢)) at timer in any particular stated (k)) € X% . One can compare those
probability densities with discrete probabilitieg (r) = [(®;|©(1))|? (|®;) € X?) that
apply to the corresponding finite systefn, ;. In order to emphasize that is ith eigen-
value of the finite Hlickel chain containingatoms (systens?), we will denote this
eigenvalue more explicitly a?é”). Sincep” (1, t)da is a probability to find a statg (1))
at timer in the statel®(k)) (. = A(k)) and in the eigenvalue intervah.done has to
compare densit)ob(kf”), t) with discrete probabilityw? (1) normalized per unit interval
Ax;. In analogy to (62), one finds that continuous probability density., #) should be
compared with discrete normalized probabiliti&s(s) according to

b
wy @) if i =1,
Ay

b
PP 1) < W) = Wi ifi—2..n-1  (65)

(A + Dhip1)/2

b
w, (1) if i =n.
AX,

Note thatAX; ~ Ae; and in the limitn — oo one has d = di (see appen-
dix). Hence in the case of largethere is no substantial difference between normal-
izations (62) and (65).

In figure 11 are compared in this way probability densiiégé, 1) (dashed lines)
with corresponding normalized probabiliti®’(t) i = 1, ..., n (vertical columns) for
the caseE = 1.5 andB = 0.6. Those parameters describe the same combined sys-
tem S, as in figure 9(a). Densities’ (1, t) are shown as continuous functions of the
unperturbed eigenvalug, while each normalized probability”(¢) is represented as
a column situated at the position of the corresponding eigen\lzﬁT&eThis is done for
three selected values of the timéexpressed in units df/y). In figures 11(a), (b) one
hast = 1, = 1, in figures 11(c), (d) one has= ¢, = 5, while in figures 11(e) and (f)
one has = 13 = 20. Those values cover three characteristic moments in the time evo-
lution of a statg®(¢)). One namely findsv?(z;) = 0.75063 w(s;) = 0.25422 and
w?(3) = 0.01264 (compare with figure 9(a)). Thus at time= #;, the decay of the
state|@(¢)) into the systend?, is on its beginning, at time= #, this decay has already
advanced, while at time= #; it is almost completed. One finds that probabilitie®(r)
are in accord with probability densitieg (1, ). In particular, if one integrates probabil-
ity densitieso®? (1, t) overa to obtain total probabilitys” (¢) for the transition of the state
|©(1)) at timer into the systens%,, one obtainsw’(t;) = [ p®(A, 1) dr = 0.24937,
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Figure 11. Probability densities? (1, ) (dashed lines) and normalized probabilitW§ (1) for the corre-
sponding finite systems,, ;1 (vertical columns) in the casé = 1.5 andg = 0.6. Those quantities are
shown as functions of the unperturbed eigenvalder three selected values of timet; = 1, tp = 5

andrz = 20 (times in units ofi/y). In (a), (c) and (e) systerdis 1 is considered, while in (b), (d) and (f)

systemSsg, 1 is considered.
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w?(t;) = 0.74578 andw’(t3) = 0.98736. Hencev’(t;) + w’(;) =1 (i = 1,2, 3) in
complete agreement with completeness requirement (43).

In order to illustrate convergence of normalized probabiliﬁ’elé(t) to p?(A, 1)
with the increase of, probability densitiep” (A, 1) are compared with normalized prob-
abilities W) (z) for a finite systemSs,; (figures 11(a), (c) and (e)) and with normalized
probabilities W} (¢) for a finite systemSso, 1 (figures 11(b), (d) and (f)). Thus at time
t = t; and in the case when the systéin ; is as small ag = 5, standard deviation of
five normalized probabilitiesv” (1) from the corresponding densitigg(A>, 1) (i =
1,...,5 is A ~ 0.0075 (figure 11(a)). In the case = 50 the agreement between
probabilitiesWib(tl) and corresponding densitieé(kf.so), t1) (i =1,...,50 substan-
tially improves and standard deviation dropsAo~ 0.0003 (figure 11(b)). One finds
similar improvements in the cases= #, ands = 3. In general, ag increases normal-
ized probabilitiesw”(¢) rapidly converge to the theoretical probability dengity(x, )
for an infinite system. One can also compare exact dep$ity, 1) with approximate
density p?°(x, 1) (equation (46a)). Though coupling = 0.6 is quite strong, density
(1, t) is relatively good approximation qof“(x, ). We omit the details of this com-
parison here. Note only that in a resonance approximation and in arlimitoo one
hasp” (1, 00) &= p“°(1) (see equation (46b)). In this case maximiypy of the density
p? (1, 00) is approximatelyimax ~ 0. In particular, in the cas€ = 1.5 andg = 0.6
one hassg = 1.82927. Thus for large enough times densifi(x, ) should have its
maximum approximately at the poiff,.x ~ 1.82927. One finds that densipy (1, £3)
taken at relatively large time = t3 when the transition of the stat®(z)) to the sys-
tem S%. is mainly completed has maximum quite close to this point (see figures 11(e)
and (f)).

Consider now the dependence of probabiliti&é(s) and densitieso”(%, 7) on
timez. If one compares figures 11(a), (c) and (e) one can see that as imeases,
the agreement between discrete probabilitiésr) and probability densitiesb(kf&, 1)
deteriorates. Thus, in the case= t; standard deviation of normalized probabilities
WP (11) from the corresponding densitigé(1\”, 1) is A ~ 0.0075 (figure 11(a)), in the
caser = 1, this standard deviation increasesAo~ 0.0934 (figure 11(c)), while in the
caser = rzitincreases ta\ ~ 0.7683 (figure 11(e)). In this last case similarity between
densitiesob(kgs), t3) and probabilitiesWib (#3) is completely lost. However, if increases

1

the agreement between probabilitmé’(tg) and densities;b(kf"), t) is regained. Thus
in the case = r3 andn = 50 one findsA ~ 0.0122 (figure 11(f)), while ifz increases
ton = 100 standard deviation drops f0~ 0.0043.

Time dependence of densitip4(1, ¢) is analyzed in more details in figure 12. In
this figure the cas& = 1.0 andg = 0.5 is considered. Those are the same parameters
as in figure 10(b). Probability densitigg (1, t) (solid lines) and corresponding nor-
malized probabilities¥? (t) (dashed lines) are plotted as functiong éér few selected
unperturbed eigenvalue$”). In figures 12(a) and (c) systefiy, is compared with finite
systemSi o1, While in figures 12(b) and (d) syste&y, is compared with finite system
S041. In particular, in figure 12(a) probability densib)’?(k(slo), 1) (k(slo) = —0.28463 is
compared with the corresponding normalized probablit§(z) for a combined system
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S10+1- Note that in the casé = 1.0 andg = 0.5 one hagy = 1.14286. Maximumimax
of the probability density? (%, 00) is henceimay &~ 1.14286. Eigenvalual'™ is rela-
tively far from this maximum, and the cury& ("%, 1) is oscillatory with an asymptotic
value in alimitt — oo. This oscillatory behavior is in accord with the resonance approx-
imation (46a). Normalized probabilityZ () initially follows the curvep”(.S°, 1), but
fort > ¢ ~ 10 it starts to deviate from it. In figure 12(b) probability dengity\2”, )
(A(lzoo) = —0.14946 is compared with the corresponding normalized probabWiti(r)
for a combined systerfio; 1. Eigenvalue\\3” is also relatively far frommay. However,
it is relatively close to the eigenvalwélo) and hence the corresponding theoretical curve
pPWF, 1) is similar to the curvep? (A%, r). Since normalized probability?,(1) in
figure 12(b) refers to the systefiyo, 1, the agreement betweeﬁ(x(foo), t) and Why(1)
is much better. In particular, the Cur\Wfo(t) deviates significantly fronpb(x(lzc,o), 1)
only fort > ¢ ~ 20. Similar comparisons are shown in figure 123 9 = 1.30972
and in figure 12(d) %Y = 1). In those last two examples eigenvalugs” and '3’
are relatively close to the pointhx &~ 9, and the corresponding probability densities
PP (159, 1) andp? ({2, 1) are not oscillatory. This absence of oscillations close to the
pointeq is suggested by the resonance approximation (46a). In addition, due to the vicin-
ity of 2.5 andA{3Y to Amax those densities are much larger that densjtfga ", 1) and
pb(k(lio), t). Again, the increase of fromn = 10 ton = 20 significantly improves the
agreement between theoretical densities for a sy$tgrand the corresponding normal-
ized probabilities for a finite systets)},, ;. Note also that for > 10 one hasv?(r) =~ 0
(see figure 10(b)) and for such times the decay of a state)) to the systemS? is
mainly completed. This is qualitatively in accord with figure 12 where probabilities
,o”()»l?"), t) change quite substantially for< 10, while fors > 10 those probabilities
approach to an asymptotic value.

Above behavior of densities” (1", t) and corresponding normalized probabili-
ties Wib(t) is analogous to the behavior of the probabilitie$(r) andw (¢) illustrated
in figure 9. In general, each normalized probabilitif (t) of a finite systemS,, re-
produces theoretical probabilivy’(kf’”, t) of the corresponding infinite systef, up
to some point = . If t < ¢ curve W/(z) is virtually identical to the theoretical
curve ,o”()»l?"), t). However, ifr > ¢ curve Wl-b(t) starts to deviate significantly from
p”(kg”), t). Asn increases the point= ¢’ increases approximately linearly with One
finds that in all cases probabilitie&”(t) converge to the probabilityo”(kﬁ"), t) of an
infinite systemsS,,.

o
1

7.4. General interaction of the stat®) with the one-dimensional solid

In the above model we have considered a d@iethat interacts with the first atom
of the infinite one-dimensional solid (Huckel chain). This interaction is described by
relation (51). In a more realistic model the st interacts with several atoms of
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a Hickel chain, and in this case instead of the relation (51) one should use relation (50).
Generalization to this case is straightforward. In particular, one finds

fle) = [Zﬂ,-a,- <e>]
J

where coefficientg; satisfy) " ; g% = 1 and where

2
’

w(&) =) BiBjwij(e), (66a)
ij

sin(kj)
(8) = —— —2,2
“ (8) m 8=2C03k)’ cel e (66b)
2 (7 sin(ki)sinkj) 2 a;(x)a;j(x)
w,j(e)—P;/O mdk—P/zig_x dx, SE(—OO, OO)

One can obtain all functions;; (¢) anda; (¢) in a closed form [4]. One thus finds
that each functiom;; (¢) is continuous on the entire real axis. Accordingly, if the local
state|®) interacts with a finite number of the statgs € X% of an infinite Hiickel chain,
characteristic functiom (¢) is continuous for each € (—o0, 00). Critical pointsE;
andEy, are hence finite, and in th&, B)-plane there is well defined separation between
the regions where particular isolated eigenstate exist and where it does not exist.

For reference, we report functions; (¢) anda; (¢) for the case, j = 1, 2, 3. This
is sufficient for the description of an arbitrary interaction of the st@bewith first three
atoms of an infinite Huckel chain. After some algebra one finds

1 82 1/4 e 82 1/4
a1(5)=ﬁ<1—z> ) a2(5)=ﬁ<1—z> )

e2—1 g2\ V4 ©7)
as(e) = N (1 — Z) , ee[-22].
This implies
£+ &2 —4,
1
w11(¢) = 51°
& — g2 — 4,
g2 — 2+ e /e2 — 4,
1],
w12(8) = 51°¢ -2,
g2 —2— /g2 — 4,
e3—3e + (62 — D/e?2 — 4,
1] 5
w13(e) = > 3 &° — 3g,
€3 — 3¢ — (62 — /2 — 4,

(68)



T.P. Zivkow&'/ Interaction of a single state with a known infinite system 147

g2 — 2+ e /e2 — 4,
&
w(€) = 5 e? -2,
g2 —2— /g2 — 4,
g3 — 3¢ + (62 — 1)/ 62 — 4,
S I
wo3(e) = > 3 e° — 3g,

€3 — 3¢ — (2 — 1)Ve2 — 4,

€% — 4e® + 3¢ + (62 — 1)2/e2 — 4,
w33(e) = % g% — 4e3 + 3¢,

€2 — 43+ 3c — (62 — 1)2J/e2 — 4.

In each of the above relations the top expression refers to thecase2, middle
expression refers to the casec [—2, 2], while bottom expression refers to the case
&> 2.

Relations (66a) with explicit expressions (67) and (68) provide all necessary infor-
mation for the complete description of isolated and embedded eigenstates of the corre-
sponding combined systeff,. In this way one can analyze and describe more complex
interactions of the stat@®) with the infinite systens% . An example is shown in fig-
ure 13. In this figure few eigenvalue distributions of the st&ig that interacts with
the third site|3) € X%, of the infinite Hiickel chain are shown. In this case one has
B1 = B = 0 andpz = 1. Hencef (¢) = (as(¢))? andw(e) = waa(e). Eigenvalue dis-
tributions are given for the cage = 1.5 and for few selected values of the couplifig
If the coupling is weak# = 0.1 andg = 0.3) no isolated eigenstate exists and one
findswf = [ p9(¢) de = 1. With the increase of the coupling (= 0.5, 8 = 0.7 and
B = 0.9) in addition to the density distributiop’ (¢) one has also the contributian
of the right-isolated eigenstate. As required, one finds+ w% = 1. Finally, if the
coupling is as strong 88 = 1.1 both isolated eigenstates exist. In this case one has
w¢ + wh + wi = 1in complete agreement with completeness relation (24). Note also
that only in the case of relatively weak coupligg= 0.1 andg = 0.3 densityp“(¢)
has an approximate shape of the resonance Guff%e). In all other cases this den-
sity has multiple maxima indicating that relation (26) has multiple roots in the interval
[Aq, Ap]l. The breakdown of the resonance approximation implies sever difficulties for
a standard perturbation method. It is highly doubtful that this method could reproduce
densitiesp”(¢) shown in figure 13, even with the inclusion of many expansion terms.
The appearance of isolated eigenstategfor 0.5 indicated possible breakdown of the
perturbation expansion and very likely divergence of the perturbation series.

8. Conclusion

Interaction of the one-dimensional quantum systgfrwith the known infinite-
dimensional quantum systest, is considered. Syster§¢ contains a single state
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3

p=0.1 B=0.3
2
[P (e)de=1 " [p?(e)de=1
T T T T M 1 0 T T 1l T T 1
2 -1 0 2 € 3 2 -1 0 2 € 3
34
B=0.5 2=2.01730 B=0.7 £,=2.11600
w,=0.16110 w,=0.34178
2+
14
p°(g)de=0.83890
J j p*(£)de =0.65822
T T T T | 0 | I m— T T T 1
2 -1 0 2 € 3 -2 1 0 2 € 3
34
p=0.9 ¢, =24804 B=1.1 £,=2.39506
W,=0.42432 W,=0.46871
2
[P (e)de=052893
£,5-2.00015
14
w,=0.00236
] Ip" (&)de =0.57568 :
I'\" T T T T v 1 0 1L' T T 1 T 1
2 -1 0 2 g 3 -2 -1 0 2 € 3

Figure 13. Eigenvalue distributions of a stBg for a combined syster§y, characterized by parameters
B1 = B2 =0andB3 = 1. The cas& = 1.5 with few selected values for the coupliggs considered.
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|®) with the eigenvalueE, while systemS?, contains one-parameter eigenvalue band
Atk) (M € [Ma, Ap]). An exact approach for the treatment of the combined system
Soo = S @ St is developed. Itis shown th&t, contains embedded eigenstafése))

with continuous eigenvaluese [, A,], and, in addition, it may contain isolated eigen-
stateg ¥;) with discrete eigenvalues ¢ [A,, Ap].

Closed expressions for the embedded and isolated solutions of the combined sys-
tem are derived. In the limit of the weak coupling those expressions reproduce well-
known results for the behavior of the systesfi in the weak interaction with a sys-
temS2 . In particular, due to the interaction with the systéif, eigenvaluek of the
state|®) shifts and, in addition, ifE € [X,, A,] this eigenvalue broadens [1]. Those
results are usually obtained within the formalism of the time-independent perturbation
theory in the weak coupling limit. In particular, eigenvalue shift and eigenvalue un-
certainty of the initial eigenvalu& are in most cases obtained using only first term of
the perturbation expansion, since the calculation of higher terms is quite complex and
tedious [1,7]. In the present paper closed expressions for this eigenvalue shift and for
the eigenvalue distribution of the stdi®) are derived. Those expressions involve no
approximation, and they apply to each coupling of the sysfénwith the systemS?,
however strong.

The above approach is generalized to the time-dependent eigenvalue equation.
Here again it is well known that if a system is initially prepared in a st@te with
E € [A4, Ap], and if this state is in the weak interaction with a syst&fp, than the
state|®(¢)) (|©(0)) = |®)) will decay in an exponential way to the syste#f). This
exponential decay law is usually obtained as a result of a first order time-dependent per-
turbation expansion [1]. Here again closed expressions for the time evolution of the
state|®(r)) are derived. In particular, an exact expression for the amplit@Gde (¢))
and hence for the probability’ (r) = |(®]|©(¢))|? to find the stateé® (¢)) at timer in the
initial state|®(0)) = |®) is derived. In the limit of weak coupling probabiliwy’ (¢) re-
duces to the well-known exponential decay of the state)). However, if the coupling
is not small, a more complex decay pattern is obtained. In addition, exact expressions for
the amplitudes® (k)|®(¢)) that determine probability of a transition of the stpgr))
at timer in a statg ® (k)) € X2, are also obtained. In conclusion, the suggested method
provides exact and closed expressions for the solution of the combined systdmoth
in the time-independent as well as in the time-dependent version. There is ho power se-
ries expansion, no convergence problem, and this method applies to an arbitrary coupling
between the subsysten§$ andS?, of S..

The application of the suggested method is illustrated with a simple model for the
interaction of a single stai®) (systemSy) with an infinite one-dimensional solid in the
nearest-neighbor tight-binding approximation (syst8fr). Though this model is not
very realistic, it is sufficiently complex in order to illustrate applicability of all derived
expressions. In addition, this model provides a good test for the correctness of those
expressions. To this effect we have also considered the interaction of the s§jsteith
a finite one-dimensional solid that contaimstoms (systen$?). Since the combined
systemS, ;1 = 8¢ @ S! is finite-dimensional, it can be solved by standard diagonalisa-
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tion methods. In this way one can compare all results that apply to an infinite sgstem
(obtained using expressions derived in this paper) with corresponding results for finite
systemsS, ;1 (obtained independently in the standard way). rAscreases, the results

for the systemsS,,; should converge to the corresponding results for the systgm

This is shown to be true in all cases considered.

Obtained results are not restricted to the above simple model. Those results and
their generalization [4] apply to all cases where one considers a finite quantum sys-
temS7 in the interaction with an infinite quantum systeif) where the solution to the
systemS?_ is either known, or where one can model this solution in an appropriate way.
In particular, this includes a general problem of the interaction of a molecule with a
radiation, of the interaction of a molecule with a surface of a solid, and also of the in-
teraction of a molecule in solution with this solution. In the present paper we make in
this respect two important restrictions: the systg{ris assumed to be one-dimensional
and, in addition, the systef, is assumed to contain a single one-parameter eigenvalue
band. Both restrictions can be relaxed, and one can generalize results presented here to
the case of the interaction of an arbitrary finite dimensional syst¢mith an arbitrary

infinite dimensional syster§2, [4].
Appendix
A.1. Derivation of estimates (14)

If ¢ > &, thenw(e) > 0. From the relation (10b) and representation

kp
| = |®><®|+/ | (k)@ (k)| dk

a

of a unit operatot in the spaceX, one derives

(0|V2]0) (B|V?]0)
—<we) < ——, &> Ap.
& — Ay e —Ap
Hence and from (10a)
0V2e 0V?e
ﬁ2%+E—e<h(e)<ﬁ2%+E—e, £ > Ap, (A.2)
— Ma — MNb

whereh(e) is a monotonically decreasing function ofand wherei(sg) = 0. Thus
h(e) > 0 implies thatey exists and, in additiongsz > e. If, however,h(¢) < O
this implies that, providedy exists (i.e.,eg > A;), it satisfieser < ¢. Hence, and
from (A.1), one finds that if ¢ exists it satisfies
E + ha + V(E = )7 + 482(0|V?]©)
2

_Eth o V(E = 1)2 + 482(0|V2]0)

2

Inequality~/1+ x < 1+ x/2 (x > 0) now implies estimates (14).

. (A.2)

< ER
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A.2. Embedded eigenvalues and eigenstates

Let A(k) and(®|V|® (k)) be continuous functions dfin the interval(k,, k). Let
further 1.(k) be nondecreasing function. Partition the intefial k,] into n subintervals
of equal lengttAk = D/n (D = k;,—k,) andletk; = k,+(i—1/2)Ak (i =1,...,n) be
the midpoint ofith subinterval. Replace functiot(k) with n values); = A(k;) in those
midpoints. Similarly, replace functiot®|V|® (k)) with n values(®|V|®;) according
to

(OIV|®;) = (OIV[P(k;))V Ak. (A.3)
Normalization in (A.3) follows from the requirement that in a limit— oo one
should have)", (O|V|®;)(®; |V|O) — [(O|V|P(k))(P(k)|V|O) dk.
Expandi (k) in the pointk = kq € [kg, kp]:

Alko + h) = M(ko) + (3—2) h+ 0(h?), (A.49)
0

where(di /dk)g is a derivative ofi.(k) in the pointk = ko and whereO (h?) is a small
quantity of the ordeh?. Insertingko = k, andko + h = k. ; into (A.4) one obtains

dx j j2

In particular one has

dx
Alp = Ay —Apq = <_k) Ak+0(n*2), r=2,...,n. (A.6)

In a similar way one finds

<®|V|<1>,>(1+ 0(%)) if (O|V|®(k,)) # 0,
(ONV[D,4)) = (A7)

0(l>, if (O|V|®(k,)) = 0.

n

A.2.1. Calculation of the fractional shift (equations (19) and (21))
Lete, be cardinal. In this case _; < &, < A, ande, satisfies (7a) wherg (¢,) is
given by (7b). Consider the caBe= 0 and write2(¢,) as a sum of two terms

Q&) = Q9e) + QP(e,),

where

N(n)
QO(e,) = Z (ONV|D, ;) (D, ;|V|O)

9
& — Ay
j=—N@®) r r+J

Q®e)= Y <®|V|q>r+j><q)r+jlvl®>+ 3 (ONV|P) (Pry;IV|O)

& — )‘r+j

(A.8)

& — )‘r+j

j<—N(n) J>N@)
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ChooseN (n) = |[n%3] to be the largest integer smaller thal®. Expression
Q©O(e,) contains contributions t& (s,) from approximately 23 terms that involve
unperturbed eigenvalues that are close te,. Expression2V(e,) contains approxi-
matelyn — 2n'/3 ~ n remaining terms. Above relations apply to thaseahat satisfy
n'® <r <n —n'3. Asn increases, eigenvalues become more and more dense in
the interval[A,, A,] and in the limitn — oo discrete eigenvalues. are replaced with
continuous eigenvalues. In this limit n'/3 is negligible relative to:. We are hence
justified to apply relations (A.8) to each = ¢ € [A,, A,], €xcept the points = A, and
& = Ap.

We shell now estimate expressioR€” (¢,) andQ®(g,) in a limit n — oo.

Consider first2©(e,). Using (A.5) and (A.7) one obtains

(OIV[P,) (P, [V]O)

Q(O) r) = I(g),
(&r) A (er)
where
N(n) .
1+ 0(j/n)
Ien= ) = ._’é(.z/n)
j=—N(n) r J J
and where
Er — )"rfl
L

The quantityx(e,) is a fractional shift of, in the interval[A,_1, A,]. Sincee, is
cardinal, one has,_1 < &, < A, and hence G x(¢,) < 1.
The quantity/ (¢,) can be written as a sum of three terms:

I(Sr) = IO(Sr) + Rl(gr) + R2(8r)a

where
N(n) N(n) .
1 0G/n)

I r) = N R r) = . . ’
o= 2 Ty M= X s -ouEm

N(n) )

0G*/n)

Ra(e,) = ; - . .
2(er) ,-:ZN(n> (x(ep) = Daler) = j = 0(?/m))

We shell now show that in a limit — oo only the sumly(g,) is nonzero, while
sumsR;(e,) andR,(g,) are in this limit negligible.
Using identity [9]

1 & 1 1
;+Z<x—j +x+j> = 7 cot(mx) (A.9)

j=1
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one finds:

lim Io(e,) = 7 cot(mx(e,)).

Consider nowRy(s,). Since|j| < n'/3 there is some large positive numbérsuch
that|O(j/n)| < K|j|/n < Kn=?3. Further, for sufficiently big: there is some positive
numberL such that

, ! , <L
|x(e,) — j — O(j?/n)]
Hence
N(n)
IRyl < KLn™?® >~ 1~2KLn 3= 0(n7?).
i=—N(n)

One similarly findgR,| < O (n~%/3). Inalimitn — oo both terms are zero. Hence

lim 1(e,) = lim Io(e,) = 7 cot(mx(e,)).

n—oo

Using (A.3) and (A.6) one now finds

(OIVIP (k) (P (k) IV]O)
(di/dk),

Q@) ~ cot(wx(e,)). (A.10)

Relation (A.10) is valid as long as # oo, and asn increases, it is more and
more exact. In the limiz — oo eigenvalueg, are dense in the intervét,, k], and
in this limit one has to replace discrete quantitiesk, and (dix/dk), with continuous
guantities. Thus one obtains

Q%e,) — mf(e)cot(mx(e)), & € [ha, Ml (A.11)

where the functionf (¢) is given by (11).
Consider now the expressi@a? (). Using (A.3) one finds
QW) = Z (OV|P (ky1j)) (P (k1) IV]O)
j<—N@) & — )‘(kr+j)
(OIV[P(ky4 ) (P (kr1;)IV]O)
+
Z & — )\(errj)

Ak

Ak. (A.8)

Jj>N(n)

Each sum exclude: n'/3 terms close to the point. ~ A(k,). Successive terms in
those sums are hence slowly varying functions,qf;, and those sums can be approxi-
mated with corresponding integrals. Asncreases this approximation improves and in
alimit n — oo itis exact. According to (A.5) one has

)"(krfN(n)) = )\'rfN(n) ~NoE — 87 )"r+N(n) ~ e+ 87
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wheres = (g, — A,) + (dr/dk), Dn~%/3 ~ (di/dk), Dn=?%/3. Since lim,_,» 8 = 0 one
has

. 2 (OIV]D (k) (P(K)|V]O)
@ _
QYY) = w(e) _gl_rH) |:/ku YT dk

kp

+/ (®|V|q>(k))(<1>(k)IV|®)dk
ket+d e — A(k)

_P/"b (OIV|® (k) (P (K)|V|O)

B e — a(k)

wherei(k,) = ¢ and whereP denotes principal Cauchy integral value. Hence, and
from (A.11),

dk, & € [)\.a,)\.h],

a

Q&) = mf(e)cot(mx(e)) + w(e). (A.12)

This proves relations (19).

A.2.2. Calculation of the amplitud@® |V (¢))
Eigenstate (8a) can be written as a sum of three terms

¥,) = ——[10) + ) + plu2)].

v O,
where in the casB = 0
M (n)
(@,4;IV]|O)
wO) — N, ),
| ' ) ; Z Sr_)\r+j | +]>
j=—M@m)
(®,1,V|O) (®,1,IV|O)
)= 3 GOy, oy 5 LelOh, )
& — )\r+ . Er )‘r+'
j<—M(n) I j>M) /

and where
0, = 1+ (|0 + p(w | ®)

In the above expressions we chod#ér) = |n%/3] to be the largest integer smaller
thann?/3,

Function|W(©) contains contributions to the perturbed eigenstdtg from ap-
proximately 22/3 unperturbed statg®;) € X? whose eigenvalues, , ; are close ta,.
Function | W) contains contributions from approximately— 2n?® ~ n remaining
stateg®, ; ;) € X2.

Let us first estimate quantit@, that determines normalization of the eigenstate
|¥,). One has

M(n)

(\Ij(o)|\lj(0)> — Z

j=—M®)

(OIVI®,,)(®,;1V|O)

(Sr - )¥r+j)2 ’

(A.13)
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VRIVCIEESY

(ONV|P, ) (Pry;IV|O)

— )2
J<—M@n) (Sr )¥r+j)
O|V|D, i YD, |V|O
3 (OVI®) (@ VIO) (A14)
. (Sr_)‘r+j)2
Jj>M(n)

Consider(w @ |w©)_ Allterms in the expression (A.13) are nonnegative and hence
there is no possibility of a subtle cancellation of terms with opposite sign. Using (A.4),
(A.6) and (A.7) one finds

M(n)
(w(O)‘\I,(O)> ~ (O|V|D,)(P,|V]|O) i 1
r r 2 —_ " 2‘
(A)‘r) J=—M(n) (X(Er) J)

As n increases this expression is more and more exact. 3@ ~ n%° one
can in a limitn — oo extend summation over € [—M (n), M(n)] to the intervalj €
[—o0, 0o]. Further, if one takes derivation of (A.9) with respecttone finds

o
1 7’
> — = — . (A.15)
(x — /)2 sirf(rx)

j=—00
Hence and from (A.3) and (A.6) for sufficiently bigone has
1 (O|V|P(k))(P(k,)IV]O) w?
w0y = . A.16
< " | " ) A, (d)"/dk)r Sinz(ﬂx(gr)) ( )

Intervals A, scale a0 (nt). Hence with the increase afand if (O|V|®(k,))
# 0 and(dxr/dk), # 0, the quantity( ¥ @ |w©) scales a®) (n).

Consider now(W V' |w D). Since|j| > M(n) ~ n?3one hasjr,;; — &| >
n?3Ax,. Hence

1
Dy . .
(wP|w! )<n4/3(Mr)2[j<_§M(n)(®|V|<I>r+,><<I>r+,IVI®>

+ Y <®|V|<I>r+,-><d>r+,-|V|®>}
Jj>M(n)
1 (©v3|®)
< wan,p 2OV @IVIO = S

Since intervalsA i, scale asO(n~1) one has¢P|wDy < 0(n?3). In conclu-
sion, asn increases quantityd @ |w©) scales ag) (n) while (YD |wD) < On?3).
Therefore in a limits — oo one can neglec | ¥ D) relative to(¥©|w©). Hence
for a very bign and provided®|V|® (k,)) # 0 and(dr/dk), # O one obtains

_ B% (BIV[D (k) (P (k) |V|O) n?
AN, (dx/dk), sif(zx(e,)) (A.17)

0,
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Probabilityw? to find the stateW,) in the stat¢®) is w* = [(®|¥,)|%. Hence and
from (8a)w? = 1/0,:

(dx/dk), Sif(x(e,))

¢ = AL,
r B2OV|D (k) (P (k) |V|O) m2

(A.18)

In the limit n — oo eigenstatesW,) normalized to unity are replaced with the
eigenstate$¥ (¢)) normalized to &-function. Consider now systes,,. Let p%(g) =
[(®|W(¢))|? be probability density to find a stai®) in the eigenstatgl (¢)). In the limit
n — oo discrete probabilityw? is replaced with the probability” (¢) de to find the state
|®) in any of the eigenstatesl (¢)) that are contained in the eigenvalue interval d
Further, according to (21) fractional shif(e) is continuous function of for eache
where f(¢) andh(e) = B?w(e) + E — ¢ are continuous, with the possible exception
of the pointsx = x. that satisfyf(e.) = 0 and at the same time(s.) = 0. Hence
and from (20a) one findAg;, ~ A, and in the limitn — oo one has d = dx. Thus
relation (A.18) implies

_ Sinf(rx(e))
ESION

where f (¢) is given by (17b). Hence one derives probability amplitude (22).

There are few assumptions involved in the derivation of expressions (A.12)
and (A.19). The conditions for the validity of those expressions should be clarified.
We assume.(k) and (®|V|®(k)) to be continuous functions of a parameterMore-
over, in order to use expansion (A.4), derivative'dk should be well defined. Those are
reasonable assumptions. In particular, in the case of solids the quafitity= dk/da is
a density of levels, and this quantity is continuous function,aéxcept in those points
where d./dk = 0 and wherey (1) diverges. Even the derivativepdih) /da is continuous,
with the possible exception of few isolated points known as van Hove singularities [2].
In those points d(1) /dA diverges. Thug (k) behaves correctly almost everywhere. The
same applies to the functid®|V|® (k)). Another type of problems present those points
where d.(k)/dk = 0 and/or(®|V|®(k)) = 0. For example, in a pointidk)/dk = 0
estimate (A.6) for the small quantiti, gives onlyAx, = O(n~?). This presents
some difficulties for the correct estimation of quantit@® (¢,) andQ® (¢,). However,
all such points are isolated and usually very few in number. In conclusion, derived ex-
pressions should be valid everywhere, except possibly in the case of few isolated points.
More detailed analyze shows that majority of such points can be neglected. One finds
that the key expressions (21) and (23) are valid whenever those expressions are well de-
fined. In particular, those expressions apply also to the ¢ése= 0 providedi(e) # 0,
as well as to the cadee) = 0 providedf(¢) # 0. The only points that require some
special treatment and where derived expressions may fail are the poiotsanomal
resonance [4]. Each such point satisfies both conditjtiias) = 0 and also:(e.) = 0.

p“ (&) (A.19)
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A.3. Time-dependent eigenstates

A.3.1. Derivation of the expressions (38)

Consider the interaction of the syste$f with the n-dimensional systens? in
the caseP = 0 andS’ = 1°. Let |¥,) be eigenstates of the combined syst&m;
orthonormalized according to (5c). The sdm, |¥,)(¥,| = | is a unit operator in
X,+1, and hencg®) = ) (¥,|®)|¥,). Since|V,) are eigenstates of the combined
systems,, 1 with the eigenvalues,, this implies

0()) =) (W,|0)|w,)e e/, (A.20)
where|® (7)) is a time-dependent eigenstateS)f. ; that is at time = O prepared in a
state|®(0)) = |®). Letthe combined syste$),.; contain no singular eigenstate. In this
case expression (A.20) contains only cardinal eigenstat8s, ef Define amplitudes

jAjt 1 At
u;(t) = (®k)|0@1))e""" = E(@A@(z))&f /A, (A.21)
Since(®;|©(0)) = (P;|®) = 0 one hasg;(0) = 0.
Relation (A.20) implies

150 = Y0010 1 e

r

Using (8a) withP = 0 one finds that amplitudes; () satisfy

du;(t) —i,3<d>(kj)|v|®> Z

= p wie i, (A.22)

r
r

wherew® = |(®|¥,)|2 is the probability to find the stai®) in the (cardinal) eigenstate
|¥,) of the combined systeis, . ;.

In the limitn — oo one hask; — A(k) and hencet;(r) — u(k,t) where the
functionu(k, ) is given by (38b). Also in this limiiw? — p“(¢)de except for probabil-
ities w{ for isolated eigenstates which should be treated separately. One thus finds that
in alimitn — oo expression (A.22) is replaced with (38c).

In order to derive relation (A.22) we did assume that cardinal eigenstates of the
combined system form a complete set, i.e., there are no singular eigenstates. As ex-
plained in the main text, this assumption is justified since with an infinitesimal variation
of the operator® andV one can always transform eigenvalue equation (5a) containing
singular solutions into another eigenvalue equation containing no singular solution.

A.3.2. Derivation of the expressions (45) and (47)
In the case of a resonance approximation onedfgs) ~ p“°(¢) and wi ~ 0.
Hence

Ab 00
/ pa(g)efi(sf)»)t/h de ~ / paO(S)efi(sf)\)t/h de = efﬂﬂzf(so)t/hefi(sof)\)t/h.
ra —00
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This implies
du®(h, 1) _ du®G 1) ip
dr d

which has a solution (45).
Concerning relation (47), consider first the integfal® (1, co) da:

s A 2
b 50 B b Bf(A)da N/ 20 ~1
L B ey B FACL S

VI Q) p? eor=iG—eopi/n
h

In a similar way one finds
B0 cod(eo — Mi/hIdh % B2 [ (s0) COd (60 = MI/RI AL _ g seoppn
e T2BYf2(e0) + (80 — 1)? o 2P f2(e0) + (80 — 1)? '
In combination with (46) and (A.22) this proves (47).
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